Biodegradation

, Volume 11, Issue 2–3, pp 107–116 | Cite as

Anaerobic benzene degradation

  • Derek R. Lovley

Abstract

Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded under in situ conditions in petroleum-contaminatedaquifers in which either Fe(III) reduction or methane production is the predominant terminal electron-accepting process. Furthermore, evidence from laboratory studies suggests that benzene may be anaerobically degraded in petroleum-contaminated marine sediments under sulfate-reducing conditions. Laboratory studies have suggested that within the Fe(III) reduction zone of petroleum-contaminated aquifers, benzene degradation can be stimulated with the addition of synthetic chelators which make Fe(III) more available for microbial reduction. The addition of humic substances and other compounds that contain quinone moieties can also stimulate anaerobic benzene degradation in laboratory incubations of Fe(III)-reducing aquifer sediments by providing an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. Anaerobic benzene degradation in aquifer sediments can be stimulated with the addition of sulfate, but in some instances an inoculum of benzene-oxidizing,sulfate-reducing microorganisms must also be added. In a field trial, sulfate addition to the methanogenic zone of a petroleum-contaminated aquifer stimulated the growth and activity of sulfate-reducing microorganisms and enhanced benzene removal. Molecular phylogenetic studies have provided indications of what microorganisms might be involved in anaerobic benzene degradation in aquifers. The major factor limiting further understanding of anaerobic benzene degradation is the lack of a pure culture of an organism capable of anaerobic benzene degradation.

bioremediation Fe(III) reduction methanogenesis subsurfce microbiology sulfate reduciton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton DW & Barker JF (1992) in situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters. J. Contam. Hydrol. 9: 325-352Google Scholar
  2. Anderson RT & Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial Ecol. 15: 289-350Google Scholar
  3. Anderson RT & Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleumcontaminated aquifers. Bioremediation J. 3: 121-135Google Scholar
  4. Anderson RT & Lovley DR (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleumcontaminated aquifier. Environ. Sci. Technol. 34: 2261-2266Google Scholar
  5. Anderson RT, Rooney-Varga J, Gaw CV & Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32: 1222-1229Google Scholar
  6. Anid PJ, Alvarez PJJ & Vogel TM (1993) Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Wat. Res. 27: 685-691Google Scholar
  7. Baedecker MJ, Cozzarelli IM, Siegel DI, Bennett PC & Eganhouse RP (1993) Crude oil in a shallow sand and gravel aquifer: 3. Biogeochemical reactions and mass balance modeling in anoxic ground water. Appl. Geochem. 8: 569-586Google Scholar
  8. Baedecker MJ, Siegel DI, Bennett P & Cozzarelli IM (1989). The fate and effects of crude oil in a shallow aquifier I. The distribution of chemical species and geochemical facies. In: Mallard GE, Ragone SE (Eds) U.S. Geological Survey Water Resources Division Report 884220. U.S. Geological Survey, Reston, VA., pp 13-20Google Scholar
  9. Barbaro JR, Barker JF, Lemon LA & Mayfield CI (1992) Biotransformation of BTEX under anaerobic denitrifying conditions: field and laboratory observations. 3. Contam. Hydrol. 11: 245-272Google Scholar
  10. Barker 3K, Major P & Major D (1987) Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Wat. Monitor. Rev. 7: 64-71Google Scholar
  11. Benz M, Schink B & Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 64: 4507-4512Google Scholar
  12. Burland SM & Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529-533Google Scholar
  13. Coates JD, Anderson RT & Lovley DR (1996a) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62: 1099-1101Google Scholar
  14. Coates JD, Anderson RT, Woodward JC, Phillips EJP & Lovley DR (1996b) Anaerobic hydrocarbon degradation in petroleumcontaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ. Sci. Technol. 30: 2784-2789Google Scholar
  15. Cozzarelli IM, Eaganhouse RP & Baedecker MJ (1990) Transformation of monoaromatic hydrocarbons to organic acids in anoxic groundwater environment. Environ. Geol. Water Sci. 16: 135-141Google Scholar
  16. Edwards EA & Grbic-Galic D (1992) Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl. Environ. Microbiol. 58: 2663-2666Google Scholar
  17. Edwards EA & Grbic-Galic D (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl. Environ. Microbiol. 60: 313-322Google Scholar
  18. Ferry JG & Wolfe RS (1976) Anaerobic degradation of benzoate to methane by amicrobial consortium. Arch.Microbiol. 107: 33-40Google Scholar
  19. Flyvbjerg J, Arivn E, Jensen BK & Olsen SK (1993) Microbial degradation of phenols and aromatic hydrocarbons in creosotecontaminated groundwater under nitrate-reducing conditions. 3. Contam. Hydrol. 12: 133-150Google Scholar
  20. Galusko A, Minz D, Schink B & Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1: 415-420Google Scholar
  21. Grbic-Galic D & Vogel T (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254-260Google Scholar
  22. Heider J, Spormann AM, Beller HR & Widdel R (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22: 459-473Google Scholar
  23. Hutchins SR (1991) Optimizing BTEX biodegradation under denitrifying conditions. Environ Toxicol Chem. 10: 1437-1448Google Scholar
  24. Hutchins SR, Sewell GW, Kovacs DA & Smith GA (1991) Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25: 68-76Google Scholar
  25. Kazumi J, Caldwell ME, Suflita JM, Lovley DR & Young LY (1997) Anaerobic degradation of benzene in diverse environments. Environ. Sci. Technol. 31: 813-818Google Scholar
  26. Kuhn EP, Zeyer J, Eicher P & Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490-496Google Scholar
  27. Lee MD, Thomas JM, Borden JC, Bedient PB, Ward CH & Wilson JT (1988) Biorestoration of aquifers contaminated with organic compounds. CRC Crit. Rev. Environ. Control 18: 29-89Google Scholar
  28. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287Google Scholar
  29. Lovley DR (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20: 305-315Google Scholar
  30. Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Industr. Microbiol. 18: 75-81Google Scholar
  31. Lovley DR (2000). Fe(III)-and Mn(IV)-Reducing Prokaryotes. In:The Prokaryotes (in press)Google Scholar
  32. Lovley DR & Anderson RT (2000) The influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. 3. Hydrol. 8: 77-88Google Scholar
  33. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP & Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297-299Google Scholar
  34. Lovley DR & Blunt-Harris EL (1999) Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65: 4252-4254Google Scholar
  35. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP & Woodward JC (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382: 445-448Google Scholar
  36. Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953-958Google Scholar
  37. Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP & Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26: 152-157Google Scholar
  38. Lovley DR & Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory ironreducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858-1864Google Scholar
  39. Lovley DR & Woodward JC (1996) Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem. Geol. 132: 19-24Google Scholar
  40. Lovley DR, Woodward JC & Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128-131Google Scholar
  41. Lovley DR, Woodward JC & Chapelle FH (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(lII) forms. Appl. Environ. Microbiol. 62: 288-291Google Scholar
  42. Major DW, Mayfield CI & Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26: 8-14Google Scholar
  43. Morgan P, Lewis ST & Watkinson RJ (1993) Biodegradation of benzene, toluene, ethylbenzene, and xylenes in gas-condensatecontaminated ground-water. Environ. Pollu. 82: 181-190Google Scholar
  44. Nevin KP & Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34: 2472-2478Google Scholar
  45. Oremland RS & Capone DG (1988) Use of "specific" inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10: 285-383Google Scholar
  46. Patterson BM, Pribac F, Barber C, Davis GB & Gibbs R (1993) Biodegradation and retardation of PCE and BTEX compounds in aquifer material from Western Australia using large-scale columns. J. Contam. Hydrol. 14: 261-278Google Scholar
  47. Phelps CD, Kazumi J & Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol. Lett. 145: 433-437Google Scholar
  48. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg, D & Lovley DR (1999) Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65: 3056-3063Google Scholar
  49. Salanitro JP (1993) The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers. Ground Wat. Monitor. Remed. 13: 150-161Google Scholar
  50. Scott DT, McKnight DM., Blunt-Harris EL, Kolesar SE & Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32: 2984-2989Google Scholar
  51. Thierrin J, Davis GB, Barber C, Patterson BM, Pribac F, Power TR & Lambert M (1993) Natural degradation rates of BTEX compounds and naphthalene in a sulphate reducing groundwater environment. Hydrological Sciences 38: 309-322Google Scholar
  52. Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200-202Google Scholar
  53. Weiner J & Lovley DR (1998a) Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl. Environ. Microbiol. 64: 775-778Google Scholar
  54. Weiner J & Lovley DR (1998b) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 64: 1937-1939Google Scholar
  55. Weiner JM, Lauck TS & Lovley DR (1998) Enhanced anaerobic benzene degradation with the addition of sulfate. Bioremediation J. 2: 159-173Google Scholar
  56. Wilson BH, Smith GB & Rees JF (1986) Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: A microcosm study. Environ. Sci. Technol. 20: 997-1002Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Derek R. Lovley
    • 1
  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA.

Personalised recommendations