Generic User Modeling Systems

  • Alfred Kobsa
Article

Abstract

The paper reviews the development of generic user modeling systems over the past twenty years. It describes their purposes, their services within user-adaptive systems, and the different design requirements for research prototypes and commercially deployed servers. It discusses the architectures that have been explored so far, namely shell systems that form part of the application, central server systems that communicate with several applications, and possible future user modeling agents that physically follow the user. Several implemented research prototypes and commercial systems are briefly described.

user models tool systems user model shells user model servers usre model agents 

References

  1. Allen, C., Yaeckel, K. D. and Yaeckel, B.: 1998, Internet World Guide to One-To-One Web Marketing, John Wiley and Sons, New York.Google Scholar
  2. Allen, J. F.: 1979, A Plan-based approach to speech act recognition. Technical Report 131/79, Dept. of Computer Science, University of Toronto, Canada.Google Scholar
  3. Allgayer, J., Harbusch, K., Kobsa, A., Reddig, C., Reithinger, N. and Schmauks, D.: 1989, XTRA: A Natural-Language access system to expert systems. International Journal of Man-Machine Studies 31, 161-195.Google Scholar
  4. Andromedia: 2000, LikeMinds. Andromedia, http://www.andromedia.com/products/likeminds/index.htmlGoogle Scholar
  5. ATG: 2000, Dynamo Product Suite, Art Technology Group, http://www.atg.com/products/highlightsGoogle Scholar
  6. Billsus, D. and Pazzani, M. J.: 2000, User modeling for adaptive news access. User Modeling and User-Adapted Interaction 10(2–3), Special Issue on Deployed User Modeling, 147-180.Google Scholar
  7. Blank, K.: 1996, Benutzermodellierung für adaptive interaktive Systeme: Architektur, Methoden, Werkzeuge und Anwendungen. Sankt Augustin, Germany: infix.Google Scholar
  8. Bowne: 2000, Bowne and Co. http://www.bowne.comGoogle Scholar
  9. Brajnik, G. and Tasso, C.: 1994, A shell for developing non-monotonic user modeling systems. International Journal of Human-Computer Studies 40, 31-62.Google Scholar
  10. Breese, J., Heckerman, D. andKadie, C.: 1998, Empirical analysis of predictive algorithms for collaborative filtering. Proc. of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), San Francisco, pp. 43-52.Google Scholar
  11. Broadvision: 2000, Broadvision. www.broadvision.comGoogle Scholar
  12. Brusilovsky: 2001, Adaptive hypermedia. User Modeling and User-Adapted Interaction 11(1–2), 87-110 (this issue).Google Scholar
  13. Brusilovsky, P., Kobsa, A. and Vassileva, J. (eds.): Adaptive Hypertext and Hypermedia. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  14. Buchanan, B. G. and Shortliffe, E. H.: 1984, Rule-Based Expert Systems: TheMYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA.Google Scholar
  15. Clayton, B. D.: 1985, ART Programming Tutorial, Version 1.0. Inference Corporation, Los Angeles, CA.Google Scholar
  16. Cohen, P. R. and Perrault, C. R.: 1979, Elements of a Plan-based theory of speech acts. Cognitive Science 3, 177-212.Google Scholar
  17. Cooperstein, D., Delhagen, K., Aber, A. and Levin, K.: 1999, Making Net Shoppers Loyal. Forrester Research, Cambridge, MA.Google Scholar
  18. Finin, T. W.: 1989, GUMS: A general user modeling shell. In: A. Kobsa and W. Wahlster (eds.), User Models in Dialog Systems. Springer-Verlag, Berlin, Heidelberg, pp. 411-430.Google Scholar
  19. Finin, T. W. and Drager, D.: 1986, A general user modeling system. Proc. of the 6th Canadian Conference on Artificial Intelligence, Montreal, Canada, pp. 24-29.Google Scholar
  20. Fink, J.: 1999, Transactional consistency in user modeling systems. In: J. Kay (ed.), UM99 User Modeling: Proceedings of the Seventh International Conference. Springer-Verlag, Wien New York. pp. 191-200.Google Scholar
  21. Fink, J.: 2001, User Modeling Servers–Requirements, Design, and Implementation. Ph.D. Thesis, Dept. of Mathematics and Computer Science, University of Essen, Germany (forthcoming).Google Scholar
  22. Fink, J. and Kobsa, A.: 2000, A review and analysis of commercial user modeling servers for personalization on the World Wide Web. User Modeling and User-Adapted Interaction 10(2–3), Special Issue on Deployed User Modeling, 209-249.Google Scholar
  23. Fink, J., Kobsa, A. and Jaceniak, I.: 1997, Individualisierung von Benutzerschnittstellen mit Hilfe von Datenchips für Personalisierungsinformation. GMD-Spiegel 1/1997, 16-17. http://www.ics.uci.edu/_kobsa/papers/1997-GMD-kobsa.psGoogle Scholar
  24. Hagen, P., Manning, H. and Souza, R.: 1999, Smart Personalization. Forrester Research, Cambridge, MA.Google Scholar
  25. Herlocker, J., Konstan, J., Borchers, A. and Riedl, J.: 1999, An algorithmic framework for performing collaborative filtering. In: M. Hearts, F. Gey and R. Tong (eds.), Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, pp. 230-237. http://www.cs.umn.edu/Research/GroupLens/Algs.pdfGoogle Scholar
  26. Hof, R. Green, H. and Himmelstein, L.: 1998, Now it's YOUR WEB. Business Week (October 5), 68-75.Google Scholar
  27. Huang, X., McCalla, G. I., Greer, J. E. and Neufeld, E.: 1991, Revising deductive knowledge and stereotypical knowledge in a student model. User Modeling and User-Adapted Interaction 1(1), 87-115.Google Scholar
  28. Intellicorp: Intellicorp. http://www.intellicorp.comGoogle Scholar
  29. Kass, R.: 1988, Acquiring a Model of the User's Beliefs from a Cooperative Advisory Dialog. Ph.D. Thesis, Dept. of Information and Computer Science, University of Pennsylvania, Philadelphia, PA.Google Scholar
  30. Kass, R.: 1989, Student modeling in intelligent tutoring systems–implications for user modeling. In: A. Kobsa and W. Wahlster (eds.), User Models in Dialog Systems. Springer-Verlag, Berlin, Heidelberg, pp. 386-410.Google Scholar
  31. Kay, J.: 1995, The um Toolkit for reusable, long term user models. User Modeling and User-Adapted Interaction 4(3), 149-196.Google Scholar
  32. Kleiber, U.: 1994, Erklaärung in interaktiven Systemen und Unterstützungsmö glichkeiten durch das System BGP-MS. WIS Memo 6, WG Knowledge-based Information Systems, Department of Information Science, University of Konstanz, Germany.Google Scholar
  33. Knowledge Craft: 1988, Knowledge Craft, 3.2 Edn. Carnegie Group, Inc., Pittsburgh, PA.Google Scholar
  34. Kobsa, A.: 1985, Benutzermodellierung in Dialogsystemen. Springer Verlag, Berlin, Heidelberg.Google Scholar
  35. Kobsa, A.: 1989, A taxonomy of beliefs and goals for user models in dialog systems. In: A. Kobsa. and W. Wahlster (eds.), User Models in Dialog Systems. Springer-Verlag, Berlin, Heidelberg, pp. 52-68.Google Scholar
  36. Kobsa, A.: 1990,Modeling the user's conceptual knowledge in BGP-MS, a user modeling shell system. Computational Intelligence 6, 193-208.Google Scholar
  37. Kobsa, A.: 1995, Editorial. Using Modeling and User-Adapted Interaction 4(2), Special Issue on User Modeling Shell Systems, iii-v.Google Scholar
  38. Kobsa, A., Koenemann, J. and Pohl, W.: 2001, Personalized Hypermedia Presentation Techniques for Improving Customer Relationships. The Knowledge Engineering Review, forthcoming.Google Scholar
  39. Kobsa, A., Müller, D. and Nill, A.: 1994, KN-AHS: An adaptive hypertext client of the user modeling system BGP-MS. Proceedings of the Fourth International Conference on User Modeling, Hyannis, MA, 99-105. Reprinted in M. Maybury and W. Wahlster (eds.), (1998). Intelligent User Interfaces. Morgan Kaufman, San Mateo, CA, pp. 372-378.Google Scholar
  40. Kobsa, A. and Pohl, W.: 1995, The BGP-MS user modeling system. User Modeling and User-Adapted Interaction 4(2), 59-106.Google Scholar
  41. Kobsa A, and Wahlster, W. (eds.): 1989, User Models in Dialog Systems. Springer Verlag, Heidelberg, Berlin.Google Scholar
  42. Kono, Y., Okeda, M. and Mizoguchio, R.: 1994, THEMIS: A nonmonotonic inductive student modeling system. Journal of Artificial Intelligence in Education 5(3), 371-413.Google Scholar
  43. Machado, I., Martins, A. and Paiva, A.: 1999, One for all and all in one: A learner modelling server in a multi-agent platform. In: J. Kay (ed.), UM99 User Modeling: Proceedings of the Seventh International Conference, Springer-Verlag, Wien, New York.Google Scholar
  44. Manna: Manna. http://www.mannainc.comGoogle Scholar
  45. McTear, M. (ed.): 1993, Artificial Intelligence Review 7(3). Special issue on user modeling.Google Scholar
  46. Microsoft: 2000, Product and Technology Catalog. www.microsoft.com/productsGoogle Scholar
  47. Morik, K.: 1982, Überzeugungssysteme der Künstlichen Intelligenz: Validierung vor dem Hintergrund linguistischer Theorien über implizite Ä uβerungen. Niemeyer, Tübingen.Google Scholar
  48. Net Perceptions: 2000, Net Perceptions. http://www.netperceptions.comGoogle Scholar
  49. Open Sesame: 2000, Open Sesame. Bowne and Co., http://www.opensesame.comGoogle Scholar
  50. Orwant, J.: 1995, Heterogenous learning in the Doppelgänger user modeling system. User Modeling and User-Adapted Interaction 4(2), 107-130.Google Scholar
  51. Paiva, A. and Self, J.: 1995, TAGUS–A user and learner modeling workbench. User Modeling and User-Adapted Interaction 4(3), 197-226.Google Scholar
  52. Paliouras G., Karkaletsis, V., Papatheodorou, C. and Spyropoulos, C.: 1999, Exploiting learning techniques for the acquisition of user stereotypes and communities. In: J. Kay(ed.), UM99 User Modeling: Proceedings of the Seventh International Conference.Springer-Verlag, Wien, New York. pp. 169-178.Google Scholar
  53. Peppers, D. and Rogers, M.: 1993, The One to One Future: Building Relationships One Cus tomer at a Time. Currency Doubleday, New York, N.Y.Google Scholar
  54. Peppers, D. and Rogers, M.: 1997, Enterprise One to One: Tools for Competing in the Interactive Age. Currency Doubleday, New York, N.Y.Google Scholar
  55. Perrault, C. R., Allen, J. F. and Cohen, P. R.: 1978, Speech acts as a basis for understanding dialogue coherence. Report 78-5, Department of Computer Science, University of Toronto, Canada.Google Scholar
  56. Pohl, W.: 1997, LaboUr–Machine learning for user modeling. In: M. J. Smith, G. Salvendy and R. J. Koubek (eds.), Design of Computing Systems: Social and Ergonomic Considerations (Proceedings of the Seventh International Conference on Human-Computer Interaction). Elsevier, Amsterdam. pp. 27-30.Google Scholar
  57. Pohl, W.: 1998, Logic-Based Representation and Reasoning for UserModeling Shell Systems. Sankt Augustin, Germany: infix.Google Scholar
  58. Pohl, W.: 1999, Logic-based representation and reasoning for user modeling shell systems. User Modeling and User-Adapted Interaction 9(3), 217-282.Google Scholar
  59. Pohl, W. and Hhle, J.: 1997, Mechanisms for flexible representation and use of knowledge in user modeling shell systems. In: A. Jameson, C. Paris and C. Tasso (eds.), User Modeling: Proceedings of the Sixth International Conference. Springer-Verlag, Wien, New York. pp. 403-414.Google Scholar
  60. Rich, E.: 1979a, Building and ExploitingUserModels. Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
  61. Rich, E.: 1979b, User modeling via stereotypes. Cognitive Science 3, 329-354.Google Scholar
  62. Rich, E.: 1981, Users are individuals: Individualizing user models. International Journal of Man-Machine Sciences 18, 199-214.Google Scholar
  63. Rich, E.: 1989, Stereotypes and user modeling. In: A. Kobsa, and W. Wahlster (eds.), User Models in Dialog Systems. Springer, Berlin, Heidelberg, pp. 35-51.Google Scholar
  64. Russel, B.: 1954, Human Knowledge: Its Scope and Limits. George Allen & Unwin, London, U.K.Google Scholar
  65. Schreck, J.: 2000, Security and Privacy in UserModels.Dept. of Mathematics and Computer Science, University of Essen, Germany.Google Scholar
  66. Shortliffe, E. H.: 1976, Computer-Based Medical Consultations: MYCIN. North-Holland, New York.Google Scholar
  67. Sleeman, D.: 1985, UMFE: A user modelling front-end subsystem. International Journal of Man-Machine Studies 23, 71-88.Google Scholar
  68. Sleeman, D. and Brown, J. S.: 1982, Intelligent Tutoring Systems. Academic Press, New York.Google Scholar
  69. Taylor, J. A., Carletta, J. and Mellish, C.: 1996, Requirements for belief models in cooperative dialogue. User Modeling and User-Adapted Interaction 6(1), 23-68.Google Scholar
  70. van Melle, W.: 1982, System Aids in Constructing Consultation Programs: EMYCIN. UMI Research Press, Ann Arbor, MI.Google Scholar
  71. Vergara, H.: 1994, PROTUM: A Prolog based tool for user modeling. WIS-Report 10, WG Knowledge-Based Information Systems, Department of Information Science, University of Konstanz, Germany.Google Scholar
  72. Yimam, D. and Kobsa, A.: 2001, Expert finding systems for organizations: Problem and domain analysis and the DEMOIR approach. In: M. Ackerman, A. Cohen, V. Pipek and V. Wulf (eds.), Beyond Knowledge Management: Sharing Expertise, forthcoming.Google Scholar
  73. Zukerman, I, and Litman, D.: 2001, Natural language processing and user modeling: synergies and limitations. User Modeling and User-Adapted Interaction 11(1–2), 129-158 (this issue).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Alfred Kobsa
    • 1
  1. 1.Department of Information and Computer ScienceUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations