Journal of Paleolimnology

, Volume 26, Issue 1, pp 67–87

The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record

  • Holger Cremer
  • Bernd Wagner
  • Martin Melles
  • Hans-Wolfgang Hubberten
Article

Abstract

A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.

The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.

The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).

The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).

paleolimnology Greenland diatoms lake sediments Holocene ice extent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. J., P. Blomqvist & I. Renberg, 1997. An experimental and paleoecological study of algal responses to lake acidification and liming in three Swedish lakes. Eur. J. Phycol. 32: 35–48.Google Scholar
  2. Bachmann, H., 1921. Beiträge zur Algenflora des Süßwassers von Westgrönland. Mitt. naturforsch. Gesell. Luzern 8: 21–36.Google Scholar
  3. Battarbee, R. W., 1973. A new method for estimation of absolute microfossil numbers, with reference especially to iatoms.Limnol. Oceanogr. 18: 647–653.Google Scholar
  4. Bennion, H., 1995. Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Res. 10: 1–19.Google Scholar
  5. Berg, A. 1945. Diatomeen von der Sophia-Expedition im Jahre 1883. Ark. Bot. 32A: 1–34.Google Scholar
  6. Bérard-Therriault, L., A. Cardinal & M. Poulin, 1987. Les diatomées (Bacillariophyceae) benthiques de substrats durs des eaux marines et saumâtres du Québec. Centrales. Nat. Can. 114: 81–103.Google Scholar
  7. Björck, S., O. Bennike, Ó. Ingólfsson, L. Barnekow & D. N. Penney, 1994. Lake Boksehandsken's earliest postglacial sediments and their palaeoenvironmental implications, Jameson Land, East Greenland. Boreas 23: 1–14.Google Scholar
  8. Blake Jr., W., M. M. Boucherle, B. Fredskild, J. A. Janssens & J. P. Smol, 1992. The geomorphological setting, glacial history and Holocene development of ‘Kap Inglefield Sø’, Inglefield Land, North-West Greenland. Meddr. Grønland, Geosci. 27: 2–42.Google Scholar
  9. Brun, J., 1901. Diatomées d'eau douce de l'île Jan Mayen et de la côte est du Groenland. Bih. Kongl. Svenska Vet. Akad. Handl. 26: 1–22.Google Scholar
  10. Cleve, P. T., 1881. Färsvattensdiatomacéer från Grönland och Argentinska Republiken. Öf. Kongl. Svenska Vet. Akad. Forhandl. 38: 3–13.Google Scholar
  11. Cremer, H., 1998. The diatom flora of the Laptev Sea (Arctic Ocean). Bibl. Diatomol. 40: 1–169.Google Scholar
  12. Cumming, B. F., S. E. Wilson, R. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibl. Diatomol. 31: 1–207.Google Scholar
  13. Dahl-Jensen, D., K. Mosegard, N. Gundestrup, G. Clow, S. J. Johnsen, A. W. Hansen & N. Balling, 1998. Past temperatures directly from the Greenland ice sheet. Science 282: 268–271.Google Scholar
  14. DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geoch. Cosmoch. Acta 45: 1715–1732.Google Scholar
  15. Denys, L. & L. Beyens, 1987. Some diatoms and their assemblages from the Angmagssalik region, south-east Greenland. Nova Hedwigia 45: 389–413.Google Scholar
  16. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In Stoermer, F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, 227–244.Google Scholar
  17. Findlay, D. L., H. J. Kling, H. Rönicke & W. J. Findlay, 1998. A paleolimnological study of eutrophied Lake Arendsee (Germany). J. Paleolim. 19: 41–54.Google Scholar
  18. Foged, N., 1953. atoms from West Greenland. Meddr Grønland 147: 1–86.Google Scholar
  19. Foged, N., 1955. Diatoms from Peary Land, North Greenland, collected by Kjeld Holmen. Meddr Grønland 128: 1–90.Google Scholar
  20. Foged, N., 1958. The diatoms in the basalt area and adjoining areas of archean rock in West Greenland. Meddr Grønland 156: 1–146.Google Scholar
  21. Foged, N., 1972. The diatoms in four postglacial deposits in Greenland. Meddr Grønland 194: 1–66.Google Scholar
  22. Foged, N., 1973. Diatoms from Southwest Greenland. Meddr Grønland 194: 1–84.Google Scholar
  23. Foged, N., 1974. Freshwater diatoms from Iceland. Bibl. Phycol. 15: 1–118.Google Scholar
  24. Foged, N., 1977. The diatoms in four postglacial deposits at Godthåbsfjord, West Greenland.Meddr Grønland 199: 1–64.Google Scholar
  25. Foged, N., 1981. Diatoms in Alaska. Bibl. Phycol. 53: 1–317.Google Scholar
  26. Foged, N., 1989. The subfossil diatom flora of four geographically widely separated cores in Greenland. Meddr Grønland, Biosci. 30: 1–75.Google Scholar
  27. Frank, A., 1986. In search of biomonitors for cadmium: cadmium content of wild Swedish fauna during 1973–1976. Sci. Total Environ. 57: 57–65.Google Scholar
  28. Fredskild, B., 1973. Studies in the vegetational history of Greenland. Meddr Grønland 198: 1–246.Google Scholar
  29. Fredskild, B., 1983. The Holocene vegetational development of the Godthåbsfjord area, West Greenland. Meddr Grønland, Geosci. 10: 1–28.Google Scholar
  30. Fredskild, B., 1985a. Holocene pollen records from West Greenland. In Andrews, J. T. (ed.), Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and Western Greenland. Allen and Unwin, Boston, 643–681.Google Scholar
  31. Fredskild, B., 1985b. The Holocene vegetational development of Tugtuligssuaq and Qeqertat, Northwest Greenland. Meddr Grønland, Geosci. 14: 1–20.Google Scholar
  32. Fuge, D. P., 1930. Diatoms from near Kugssuk, West Greenland. Meddr Grønland 76: 213–224.Google Scholar
  33. Funder, S., 1978. Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland. Grønlands Geol. Undersøg. Bull. 129: 1–66.Google Scholar
  34. Funder, S., 1989. Quaternary geology of the ice free areas and adjacent shelves of Greenland. In Fulton, R. J. (ed.), Quaternary Geology of Canada and Greenland: Geological Survey of Canada, Torornto, 743–792.Google Scholar
  35. Hansen, K., 1967. The general limnology of arctic lakes illustrated by examples from Greenland. Meddr Grønland 178: 1–78.Google Scholar
  36. Harpøth, O., J. L. Pedersen, H. K. Schønwandt & B. Thomassen, 1986. The mineral occurrences of central East Greenland. Meddr Grønland, Geosci. 17: 1–139.Google Scholar
  37. Håkansson, H., 1990a. A comparison of Cyclotella krammeri sp. nov. and C.schumannii Håkansson stat. nov. Diatom Res. 5: 261–271.Google Scholar
  38. Håkansson, H., 1990b. Cyclotella tripartita nov. sp. (Bacillariophyceae) and the relationship to similar taxa. In Ricard, M. (ed.), Ouvrage dédié à la mémoire du Professeur Henry Germain (1903–1989). Koeltz Scientific Books, Koenigstein, 75–82.Google Scholar
  39. Håkansson, H. & H. Kling, 1990. The current status of some vey small freshwater diatoms of the genera Stephanodiscus and Cyclostephanos. Diatom Res. 5: 273–287.Google Scholar
  40. Headley, A. D., 1996. Heavy metal concentrations in peat profiles from the high Arctic. Sci. Total Environ. 177: 105–111.Google Scholar
  41. Hebbeln, D., R. Henrich & K.-H. Baumann, 1998. Paleocenaography of the last Interglacial/Glacial cycle in the polar North Atlantic. Quat. Sci. Rev. 17: 125–153.Google Scholar
  42. Hegewald, E. & A. Hindáková, 1997. Variabilität von einer natürlichen Population und von Klonene des Cyclotella ocellata-Komplexes (Bacillariophyceae) aus dem Gallbergweiher, Nordwestdeutschland. Algol. Studies 86: 17–37.Google Scholar
  43. Hein, M. K., 1990. Flora of Adak Island, Alaska: Bacillariophyceae (Diatoms). Bibl. Diatomol. 21: 1–133.Google Scholar
  44. Hoffmann, G., 1994. Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibl. Diatomol. 30: 1–241.Google Scholar
  45. Hustedt, F., 1930. Die Kieselalgen Deutschlands, Österreichs und der Schweiz, 1. Teil. Koeltz Scientific Books, Champaign, 920 pp (Reprint 1991).Google Scholar
  46. Hustedt, F., 1959. Die Kieselalgen Deutschland, Österreichs und der Schweiz, 2. Teil. Koeltz Scientific Books, Champaign, 845 pp (Reprint 1991).Google Scholar
  47. Hustedt, F., 1961–1966. Die Kieselalgen Deutschlands, Österreich und der Schweiz, 3. Teil. Koeltz Scientific Books, Koenigstein, 816 pp (Reprint 1977).Google Scholar
  48. Johnsen, S. J., H. B. Clausen, W. Dansgaard, N. S. Gundestrup, M. Hansson, P. Jonsson, J. P. Steffensen & A. E. Sveinbjørnsdottir, 1992. A ‘deep’ ice core from East Greenland. Meddr Grønland, Geosci. 29: 1–29.Google Scholar
  49. Kiss, K. T., C. Rajo & M. Alvarez Cobelas, 1996. Morphological variability of a Cyclotella ocellata (Bacillariophyceae) population in the Lake Las Madras (Spain). Algol. Studies 82: 37–55.Google Scholar
  50. Kling, H. & H. Håkansson, 1988. A light and electron microscope study of Cyclotella species (Bacillariophyceae) from central and Canadian lakes. Diatom Res. 3: 55–82.Google Scholar
  51. Koç, N., E. Jansen & H. Haflidason, 1993. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14ka based on diatoms. Quat. Sci. Rev. 12: 115–140.Google Scholar
  52. Krammer, K., 1982. Valve morphology in the genus Cymbella C.A. Agardh. Micromorph. Diatom Valves 11: 9–299.Google Scholar
  53. Krammer, K. & H. Lange-Bertalot, 1985. Naviculaceae, neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. Bibl. Diatomol. 9: 1–230.Google Scholar
  54. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/1. Fischer Verlag, Stuttgart, 1–876.Google Scholar
  55. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart, 1–596.Google Scholar
  56. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig, & D. Mollenhauer, (eds), Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, 1–576.Google Scholar
  57. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer, (eds), Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, 1–437.Google Scholar
  58. Lichti-Federovich, S., 1980. Diatom flora of red snow from Isbjørneø, Carey Øer, Greenland. Nova Hedwigia 33: 395–431.Google Scholar
  59. Long, A. J., D. H. Roberts & M. R. Wright, 1999. Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. J. Quat. Sci. 14: 323–345.Google Scholar
  60. Lowe, R. L., 1975. Comparative ultrastructure of the valves of some Cyclotella species (Bacillariophyceae). J. Phycol. 11: 415–424.Google Scholar
  61. Melles, M., T. Kulbe, P. P. Overduin & S. Verkulich, 1994. The expedition Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. In: Melles, M. (ed.), The Expeditions Norilsk/Taymyr 1993 and Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven. Rep. Polar Res. 148: 27–80.Google Scholar
  62. Metzeltin, D. & A. Witkowski, 1996. Diatomeen der Bären-Insel. Iconogr. Diatomol. 4: 3–232.Google Scholar
  63. Meyer, B. & H. Håkansson, 1996. Morphological variation of Cyclotella polymorpha sp. nov. (Bacillariophyceae). Phycologia 35: 64–69.Google Scholar
  64. Mölder, K. & R. Tynni, 1968–1973. Ñber Finnlands rezente und subfossile Diatomeen II-VII. Bull. Geol. Soc. Finland 40: 151–170 (1968), 41: 235–251 (1969), 42: 129–144 (1970), 43: 203– 220 (1971), 44: 141–159 (1972), 45: 159–179 (1973).Google Scholar
  65. Müller, P. J. & R. Schneider, 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res. 40: 425–444.Google Scholar
  66. Østrup, E., 1897. Ferskvands-Diatoméer fra Øst-Grønland. Meddr Grønland 15: 251–290.Google Scholar
  67. Østrup, E., 1910. Diatoms from North East Greenland. Meddr Grønland 43: 199–256.Google Scholar
  68. Pankow, H., 1990. Ostsee-Algenflora. Gustav Fischer, Jena: 648 pp.Google Scholar
  69. Petersen, J. B., 1924. Freshwater-algae from the north coast of Greenland, collected by the late Dr. Th. Wulff. Meddr Grønland 64: 307–319.Google Scholar
  70. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21–49.Google Scholar
  71. Reavie, E. D., R. I. Hall & J. P. Smol, 1995. An expanded weightedaveraging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolim. 14: 49–67.Google Scholar
  72. Sabater, S. & E. Y. Haworth, 1995. An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments. J. Paleolim. 14: 151–163.Google Scholar
  73. Scheffler, W., 1994. Cyclotella pseudocomensis nov. sp. (Bacillariophyceae) aus norddeutschen Seen. Diatom Res. 9: 355–369.Google Scholar
  74. Scheffler, W. & J. Padisák, 1997. Cyclotella tripartita (Bacillariophyceae), a dominant species in the oligotrophic Lake Stechlin, Germany. Nova Hedwigia 65: 221–232.Google Scholar
  75. Schrader, H. & R. Gersonde, 1978. Diatoms and Silicoflagellates. Utrecht Micropaleont. Bull. 17: 129–176.0Google Scholar
  76. Simonsen, R., 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Int. Revue ges. Hydrobiol., Syst. Beih. 1: 9–148.Google Scholar
  77. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  78. Snoeijs, P. & M. Potapova, 1998. Ecotypes or endemic species? – a hypothesis on the evolution of Diatoma taxa (Bacillariophyta) in the northern Baltic Sea. Nova Hedwigia 67: 303–348.Google Scholar
  79. Sorvari, S. & A. Korhola, 1998. Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lappland, and their paleoenvironmental implications. J. Paleolim. 20: 205–215.Google Scholar
  80. St. Jacques, J.-M., M. S. V. Douglas & J. H. McAndrews, 2000. Mid-Holocene hemlock decline and diatom communities in van Nostrand Lake, Ontario, Canada. J. Paleolim. 23: 385–397.Google Scholar
  81. Stoermer, E. F., G. Emmert, M. L. Julius & C. L. Schelske, 1996. Paleolimnologic evidence of rapid recent change in Lake Erie's trophic status. Can. J. Fish. Aquat. Sci. 53: 1451–1458.Google Scholar
  82. Stoermer, E. F. & J. P. Smol, 1999. The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge: 469 pp.Google Scholar
  83. Straub, F., 1987. A propos de Cyclotella comensis Grunow (Bacillariophyceae). Cah. Biol. Mar. 28: 319–322.Google Scholar
  84. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. Burr, K. A. Hughen, B. Kromer, G. McCormack, J. Van der Plicht & M. Spurk, 1998. INTCAL 98 Radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40: 1041–1083.Google Scholar
  85. Tynni, R., 1974–1980. Ñber Finnlands rezente und subfossile Diatomeen, VIII-XI. Geol. Surv. Finland Bull. 274 (1974): 1–55, 284 (1976): 1–37, 296 (1978): 1–55, 312 (1980): 1–93.Google Scholar
  86. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth. J. Aq. Ecol. 28: 117–133.Google Scholar
  87. Wagner, B., M. Melles, J. Hahne, F. Niessen & H.-W. Hubberten, 2000. Holocene deglaciation and climate history on Geographical Society Island, East Greenland – evidence from lake sediments. Palaeogeogr., Palaeoclim., Palaeoecol. 160: 45–68.Google Scholar
  88. Wagner, B. & M. Melles, in press. Holocene climatic and oceanic changes at East Greenland – evidences from seabird affected lake sediments on Raffles Island. Boreas.Google Scholar
  89. Weckström, J., A. Korhola & T. Blom, 1997. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347: 171–184.Google Scholar
  90. Wenzel, C. & G. W. Gabrielsen, 1995. Trace element accumulation in three seabird species from Hornøya, Norway. Arch. Environ. Contam. Toxicol. 29: 198–206.Google Scholar
  91. Williams, K. M., 1993. Ice sheet and ocean interactions, margin of the East Greenland ice sheet (14 ka to present): diatom evidence. Paleoceanography 8: 69–83.Google Scholar
  92. Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.Google Scholar
  93. Zale, F., 1994. 14C age corrections in Antarctic lake sediments inferred from geochemistry. Radiocarbon 36: 173–185.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Holger Cremer
    • 1
  • Bernd Wagner
    • 1
  • Martin Melles
    • 2
  • Hans-Wolfgang Hubberten
    • 1
  1. 1.Research Department PotsdamAlfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.Faculty for Physics and Geoscience, Institute for Geophysics and GeologyUniversity of LeipzigLeipzigGermany

Personalised recommendations