Charge-transfer Interaction: A Driving Force for Cyclodextrin Inclusion Complexation

  • Lei Liu
  • Ke-Sheng Song
  • Xiao-Son Li
  • Qing-Xiang Guo
Article

Abstract

PM3 calculations were performed on the complexation of α-cyclodextrin (α-CD) with nitrobenzene, benzoic acid, benzoate anion, 4-nitrophenol, and 4-nitrophenolate anion. The results, in agreement with the experimental observations, indicated that the complex α-CD-benzoic acid was more stable than α-CD-nitrobenzene, and α-CD-4-nitrophenolate was more stable than α-CD-4-nitrophenol. Frontier orbital analysis suggested that charge-transfer interaction led to such behaviors, and hence constituted a nontrivial driving force in the molecular recognition of α-CD.

charge transfer cyclodextrin driving force inclusion complexation PM3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Szejtli: Chem. Rev. 98, 1743 (1998).Google Scholar
  2. 2. (a)
    K. Takahashi: Chem. Rev. 98, 2013 (1998). (b) A.R. Hedges: Chem. Rev. 98, 2035 (1998). (c) K. Uekama, F. Hirayama, and T. Irie: Chem. Rev. 98, 2045 (1998).Google Scholar
  3. 3. (a)
    R. Breslow: Pure Appl. Chem. 66, 1573 (1994). (b) R. Breslow: Acc. Chem. Res. 28, 146 (1995). (c) R. Breslow and S.D. Dong: Chem. Rev. 98, 1997 (1998).Google Scholar
  4. 4. (a)
    H.-J. Schneider: Angew. Chem. Int. Ed. Engl. 30, 1417 (1991). (b) M.V. Rekharsky and Y. Inoue: Chem. Rev. 98, 1875 (1998).Google Scholar
  5. 5.
    K.A. Connors: Chem. Rev. 97, 1325 (1997).Google Scholar
  6. 6. (a)
    J.M. Madrid, F. Mendicuti, and W.L. Mattice: J. Phys. Chem. B 102, 2037 (1998). (b) E. Cervello and C. Jaime: J. Mol. Struct. (THEOCHEM) 428, 195 (1998).Google Scholar
  7. 7. (a)
    N. Bodor, M.-J. Huang, and J.D. Watts, J. Incl. Phenom. 25, 97 (1996). (b) M.-J. Huang, J.D. Watts, and N. Bodor: Int. J. Quantum Chem. 64, 711 (1997). (c) M.-J. Huang, J.D.Watts, and N. Bodor: Int. J. Quantum Chem. 65, 1135 (1997).Google Scholar
  8. 8. (a)
    X.-S. Li, L. Liu, Q.-X. Guo, S.-D. Chu, and Y.-C. Liu: Chem. Phys. Lett. 307, 117 (1999). (b) L. Liu, X.-S. Li, Q.-X. Guo, and Y.-C. Liu: Chin. Chem. Lett. 10, 1053 (1999).Google Scholar
  9. 9. (a)
    D.M. Davies and J.R. Savage: J. Chem. Res. (S) 94 (1993). (b) D.M. Davies, and J.R. Savage: J. Chem. Res. (M) 663 (1993). (c) D.M. Davies and M.E. Deary: J. Chem. Soc. Perkin Trans. 2, 1287 (1995).Google Scholar
  10. 10.
    J.H. Park and T.W. Nah: J. Chem. Soc. Perkin Trans. 2, 1359 (1994).Google Scholar
  11. 11. (a)
    Q.-X. Guo, S.-H. Luo, and Y.-C. Liu: J. Incl. Phenom. 30, 173 (1998). (b) H.-M. Zhang, S.-H. Luo, C. Chen, L. Liu, Q.-X. Guo, and Y.-C. Liu: Chem. Res. Chin. Univ. 15, 17 (1999). (c) L. Liu and Q.-X. Guo: J. Phys. Chem. B 103, 3461 (1999).Google Scholar
  12. 12. (a)
    Q.-X. Guo, S.-H. Luo, H. Wang, M.-S. Zhang, and Y.-C. Liu: J. Chem. Res. (S) 38 (1996). (b) L. Liu and Q.-X. Guo: J. Chem. Inf. Comput. Sci. 39, 133 (1999).Google Scholar
  13. 13. (a)
    I. Tabushi, Y. Kiyosuke, T. Sugimoto, and K. Yamamura: J. Am. Chem. Soc. 100, 916 (1978). (b) Y. Matsui: Bull. Chem. Soc. Jpn. 55, 1246 (1982).Google Scholar
  14. 14.
    M.R. Eftink, M.L. Andy, K. Bystrom, H.D. Perlmutter, and D.S. Kristol: J. Am. Chem. Soc. 111, 6765 (1989).Google Scholar
  15. 15.
    M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Carbohydr. Res. 198, 191 (1989).Google Scholar
  16. 16.
    C. Hansch, A. Leo, and R.W. Taft: Chem. Rev. 91, 165 (1991).Google Scholar
  17. 17.
    K.A. Connors: J. Pharm. Sci. 84, 843 (1995).Google Scholar
  18. 18.
    S.-H. Luo: Master Thesis, Lanzhou University, 1995.Google Scholar
  19. 19.
    R.J. Bergeron, M.A. Channing, and K.A. McGovern: J. Am. Chem. Soc. 100, 2878 (1978).Google Scholar
  20. 20. (a)
    A.B. Wong, S.-F. Lin, and K.A. Connors: J. Pharm. Sci. 72, 388 (1983). (b) S.-F. Lin and K.A. Connors: J. Pharm. Sci. 72, 1333 (1983).Google Scholar
  21. 21. (a)
    J.J.P. Stewart: J. Comput. Chem. 10, 209 (1989). (b) Y.-J. Zheng and K.M. Merz, Jr.: J. Comput. Chem. 13, 1151 (1992).Google Scholar
  22. 22. (a)
    X.-S. Li, L. Liu, T.-W. Mu, and Q.-X. Guo: Monatsh. Chem. 131, 849 (2000). (b) L. Liu, X.-S. Li, T.-W. Mu, Q.-X. Guo, and Y.-C. Liu: J. Incl. Phenom. 38, 199 (2000). (c) L. Liu, X.-S. Li, K.-S. Song, and Q.-X. Guo: J. Mol. Struct. (Theochem) 531, 127 (2000).Google Scholar
  23. 23.
    GAUSSIAN 98, Revision A.7, M. J. Frisch et al., Gaussian Inc., Pittsburgh PA, 1998.Google Scholar
  24. 24.
    K.K. Chacko and W. Saenger: J. Am. Chem. Soc. 103, 1708 (1981).Google Scholar
  25. 25. (a)
    D.J. Wood, F.E. Hruska, and W. Saenger: J. Am. Chem. Soc. 99, 1735 (1977). (b) Y. Inoue, H. Hoshi, M. Sakurai, and R. Chujo: J. Am. Chem. Soc. 107, 2319 (1985).Google Scholar
  26. 26.
    B. S. Jursic, Z. Zdravkovski, and A. D. French: J. Mol. Struct. (Theochem) 366, 113 (1996).Google Scholar
  27. 27.
    K. Morokuma: Acc. Chem. Res. 10, 294 (1977).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Lei Liu
    • 1
  • Ke-Sheng Song
    • 2
  • Xiao-Son Li
    • 1
  • Qing-Xiang Guo
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations