Journal of Applied Phycology

, Volume 13, Issue 2, pp 185–193 | Cite as

The Chondrus crispus-Acrochaete operculata host-pathogen association, a novel model in glycobiology and applied phycopathology

  • Kamal Bouarab
  • Philippe Potin
  • Florian Weinberger
  • Juan Correa
  • Bernard Kloareg


A review is presented of ongoing research on the oligosaccharide signalsinvolved in cell-cell recognition in the Chondrus crispus-Acrochaete operculata host-pathogen association. In this pathosystem,the host gametophytes are resistant to the pathogen, whereas thesporophytic generation is susceptible to infection. The virulence of thegreen algal pathogen is mediated by the recognition of carrageenanoligosaccharides released from its red algal host: kappa-carrageenanoligosaccharides inhibit A. operculata virulence while lambdacarrageenan oligosaccharides enhance its pathogenicity. It appears that therecognition of A. operculata by C. crispus also involves anoligosaccharidic signal. This signal is present in the non-virulent form of thepathogen whereas it is absent from the virulent form. Altogether thispathosystem offers a unique model to investigate the recognition ofoligosaccharide signals in plant-pathogen interactions. The possibleapplications of this research to develop new strategies for disease controlin maricultured algal crops are discussed.

disease control plant-pathogen interactions oligosaccharide signalling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker B, Zambryski P, Stackawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276: 726–733.Google Scholar
  2. Baker CJ, Orlandi, EW (1995) Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33: 299–321.Google Scholar
  3. Barbeyron, T., Michel, G., Potin P., Henrissat, B., Kloareg, B. (2000) ι-carrageeenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases. J. Biol. Chem. 275, 35499–35505.Google Scholar
  4. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11: 1635–1650.Google Scholar
  5. Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta). III. Host specificity. J. Phycol. 27: 448–459.Google Scholar
  6. Correa JA, McLachlan JL (1992) Endophytic algae of Chondrus crispus (Rhodophyta). IV. Detrimental effects on the host following infections by Acrochaete operculata and A. heteroclada. Mar. Ecol. Progr. Ser. 81: 73–87.Google Scholar
  7. Correa JA, McLachlan JL (1994) Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata. Eur. J. Phycol. 29: 33–47.Google Scholar
  8. Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophyla dendroides (Chlorophyta). J. Phycol. 24: 528–539.Google Scholar
  9. Côté F, Hahn MG (1994) Oligosaccharins: structures and signal transduction. Plant Mol. Biol. 26: 1379–1411.Google Scholar
  10. Côté F, Ham KS, Hahn MG, Bergmann CW (1998) Oligosaccharides elicitors in host-pathogen interactions. Generation, perception and signal transduction. In Biswas BB, Das HK (eds), Subcellular Biochemistry, Plant-Microbe Interactions. Plenum Press, New York, pp. 385–432.Google Scholar
  11. Darvill A, Augur C, Bergmann C, Carlson RW, Cheong JJ, Eberhard S, Hahn MG, Lò VM, Harfà V, Meyer B, Mohnen D, O'Neill MA, Spiro MD, van Halbeek H, York WS, Albersheim P (1992) Oligosaccharins, oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2: 181–198.Google Scholar
  12. Ebel J, Mithöfer A (1998) Early events in the elicitation of plant defences. Planta 206: 335–348.Google Scholar
  13. Gordon-Mills EM, McCandless EL (1975) Carrageenans in the cell walls of Chondrus crispus Stack. (Rhodophyceae, Gigartinales). I. Localization with fluorescent antibody. Phycologia 14: 275–281.Google Scholar
  14. Hammond-Kosack KE, Jones JDG (1996) Resistance genedependent plant defense responses. Plant Cell 8: 1773–1791.Google Scholar
  15. Hilbert, J.L., Costa, G., Martin, F. (1991). Ectomycorrhizin symbiosis and polypeptide changes during the early stage of eucalypt mycorrhiza development. Plant Physiol. 97: 977–984.Google Scholar
  16. Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol. 125: 278–291.Google Scholar
  17. Lamb C, Dixon RA (1997) Oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251–275.Google Scholar
  18. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.Google Scholar
  19. Levine AR, Tenhaken R, Dixon RA, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.Google Scholar
  20. McCandless EL., Craigie JS, Walter JA (1973) Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112: 201–212.Google Scholar
  21. Potin P, Bouarab K, Küpper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2: 276–283.Google Scholar
  22. Potin P, Sanséau A, Le Gall Y, Rochas C, Kloareg B (1991) Purification of a new kappa-carrageenase from a marine Cytophaga-like bacterium. Eur. J. Biochem. 201: 241–247.Google Scholar
  23. Pye DA, Vives RR, Turnbull JE, Hydes P, Gallagher JT (1998) Heparan sulfate oligosaccharides require 6–O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J. Biol. Chem. 273: 22936–22942.Google Scholar
  24. Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé, JC (1991) Molecular basis of symbiotic host specificity of Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143.Google Scholar
  25. Ryan CA, Farmer EE (1991) Oligosaccharide signaling in plants. Annu. Rev. Cell. Biol. 3: 295–317.Google Scholar
  26. Scheel D (1998) Resistance response physiology and signal tranduction. Curr. Opin. Plant Biol. 1: 305–310.Google Scholar
  27. Schuster, A.M., and Davies, E. (1983). Ribonucleic acid and protein metabolism in pea epicotyls. II. Response to wounding in aged tissue. Plant Physiol. 73: 817–821.Google Scholar
  28. Sommsich IE, Halbrock K (1998) Pathogen defense in plants: a paradigm of biological complexity. Trends Plant Sci. 3: 86–90.Google Scholar
  29. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Promé JC, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.Google Scholar
  30. Uppalapati, S.R., Fujita, J. (2000) Carbohydrate regulation of attachment, encystment and apressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36: 359–366.Google Scholar
  31. Van Camp WV, Van Montagu M, Inzé D (1998) H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3: 330–334Google Scholar
  32. Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit an oxidative burst in Gracilaria conferta (Rhodophyta). J. Phycol. 35: 747–755.Google Scholar
  33. Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes and Dev. 11: 1621–1639.Google Scholar
  34. Zablackis E, Vreeland V, Doboszewski B, Laetsch WM (1991) Differential localization of carrageenan gelling sequences in Kappaphycus alvarezii var. tambalang (Rhodophyta) with FITCconjugated carrageenan oligosaccharides. J. Phycol. 27: 241–248.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kamal Bouarab
    • 1
  • Philippe Potin
    • 1
  • Florian Weinberger
    • 1
  • Juan Correa
    • 2
  • Bernard Kloareg
    • 1
  1. 1.UMR 1931 (CNRS-Goëmar)RoscoffFrance
  2. 2.Facultad de Ciencias Biológicas, Departamento de EcologíaPontificia Universidad CatolicaSantiagoChile

Personalised recommendations