Journal of Oceanography

, Volume 56, Issue 5, pp 567–581 | Cite as

Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan

  • Koji Matsumoto
  • Takashi Takanezawa
  • Masatsugu Ooe


A global ocean tide model (NAO.99b model) representing major 16 constituents with a spatial resolution of 0.5° has been estimated by assimilating about 5 years of TOPEX/POSEIDON altimeter data into barotropic hydrodynamical model. The new solution is characterized by reduced errors in shallow waters compared to the other two models recently developed; CSR4.0 model (improved version of Eanes and Bettadpur, 1994) and GOT99.2b model (Ray, 1999), which are demonstrated in comparison with tide gauge data and collinear residual reduction test. This property mainly benefits from fine-scale along-track tidal analysis of TOPEX/POSEIDON data. A high-resolution (1/12°) regional ocean tide model around Japan (NAO.99Jb model) by assimilating both TOPEX/POSEIDON data and 219 coastal tide gauge data is also developed. A comparison with 80 independent coastal tide gauge data shows the better performance of NAO.99Jb model in the coastal region compared with the other global models. Tidal dissipation around Japan has been investigated for M2 and K1 constituents by using NAO.99Jb model. The result suggests that the tidal energy is mainly dissipated by bottom friction in localized area in shallow seas; the M2 ocean tidal energy is mainly dissipated in the Yellow Sea and the East China Sea at the mean rate of 155 GW, while the K1 energy is mainly dissipated in the Sea of Okhotsk at the mean rate of 89 GW. TOPEX/POSEIDON data, however, detects broadly distributed surface manifestation of M2 internal tide, which observationally suggests that the tidal energy is also dissipated by the energy conversion into baroclinic tide.

Ocean tide loading tide satellite altimetry assimilation tidal energy dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, O. B., P. L. Woodworth and R. A. Flather (1995): Intercomparison of recent ocean tide models. J. Geophys. Res., 100(C12), 25261–25282.Google Scholar
  2. Benada, R. (1997): Merged GDR (TOPEX/POSEIDON) Generation B user's handbook. Rep. JPL D-11007, Jet Propul. Lab., Pasadena, CA.Google Scholar
  3. Cartwright, D. E. and R. D. Ray (1991): Energetics of global ocean tides from Geosat altimetry. J. Geophys. Res., 96(C9), 16897–16921.Google Scholar
  4. Cartwright, D. E. and R. D. Ray (1994): On the radiational anomaly in the global ocean tide with reference to satellite altimetry. Oceanologica Acta, 17, 453–459.Google Scholar
  5. Christodoulidis, D. C., D. E. Smith, R. G. Williamson and S. M. Klosko (1988): Observed tidal braking in the Earth/Moon/Sun system. J. Geophys. Res., 93, 6216–6236.Google Scholar
  6. Desai, S. D. and J. Wahr (1995): Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J. Geophys. Res., 100(C12), 25205–25228.Google Scholar
  7. Dickey, J. O., P. L. Binder, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams and C. F. Yoder (1994): Lunar laser ranging: A continuing legacy of the Apollo program. Science, 265, 482–490.Google Scholar
  8. Eanes, R. J. and S. V. Bettadpur (1994): Ocean tides from two years of TOPEX/POSEIDON altimetry (abstract). EOS Trans. AGU, 75(44), Fall Meet. Suppl., 61.Google Scholar
  9. Egbert, G. D., A. F. Bennette and M. G. G. Foreman (1994): TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24821–24852.Google Scholar
  10. Groves, G. W. and R. W. Reynolds (1975): An orthogonalized convolution method of tide prediction. J. Geophys. Res., 80, 4131–4138.Google Scholar
  11. Han, G., R. Hendry and M. Ikeda (2000): Assimilating TOPEX/POSEIDON derived tides in a primitive equation model over the Newfoundland Shelf. Cont. Shelf Res., 20, 83–108.Google Scholar
  12. Hendershott, M. C. (1972): The effects of solid Earth deformation on global ocean tides. Geophys. J. R. Astr. Soc., 29, 389–402.Google Scholar
  13. Herring, T. A., C. R. Gwinn and I. I. Shapiro (1986): Geodesy by radio interferometry: Studies of the forced nutations of the Earth, 1. Data analysis. J. Geophys. Res., 91(B5), 4745–4754.Google Scholar
  14. Kantha, L. H. (1995): Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 1. Model description and results. J. Geophys. Res., 100(C12), 25283–25308.Google Scholar
  15. Kantha, L. H. and C. Tierney (1997): Global baroclinic tides. Prog. Oceanogr., 40, 163–178.Google Scholar
  16. Lambert, A., S. D. Pagiatakis, A. P. Billyard and H. Dragert (1998): Improved ocean tide loading correction for gravity and displacement: Canada and northern United States. J. Geophys. Res., 103(B12), 30231–30244.Google Scholar
  17. Le Provost, C. and F. Lyard (1997): Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Prog. Oceanogr., 40, 37–52.Google Scholar
  18. Le Provost, C., M. L. Genco, F. Lyard and P. Canceil (1994): Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J. Geophys. Res., 99(C12), 24777–24797.Google Scholar
  19. Le Provost, C., J. M. Molines, F. Lyard, M. L. Genco and F. Rabilloud (1995): A global ocean tide prediction model based on the hydrodynamic finite element solutions FES94.1 improved by assimilation of the CSR2.0 T/P solutions (abstract). Paper presented at symposium Operational Oceanography and Satellite Observation, Biarritz, France, 1995.Google Scholar
  20. Matsumoto, K. (1997): Development of a new precise ocean tide model based on satellite altimeter data. Ph.D. Thesis, University of Tokyo, 122 pp.Google Scholar
  21. Matsumoto, K., M. Ooe, T. Sato and J. Segawa (1995): Ocean tide model obtained from TOPEX/POSEIDON altimetry data. J. Geophys. Res., 100(C12), 25319–25330.Google Scholar
  22. Morozov, E. G. (1995): Semidiurnal internal wave global field. Deep-Sea Res., 42, 135–148.Google Scholar
  23. Munk, W. H. and D. E. Cartwright (1966): Tidal spectroscopy and prediction. Philos. Trans. R. Soc. London, Ser. A, 259, 533–581.Google Scholar
  24. Niwa, Y. and T. Hibiya (1999): Spatial distribution of internal tides in the North Pacific predicted using a three-dimensional numerical model. EOS Trans. AGU, 80(49), Ocean Sciences Meet. Suppl., OS203.Google Scholar
  25. Pugh, D. T. (1987): Tides, Surges and Mean Sea-Level. John Wiley & Sons, 472 pp.Google Scholar
  26. Ray, R. D. (1998a): Ocean self-attraction and loading in numerical tidal models. Mar. Geod., 21, 181–192.Google Scholar
  27. Ray, R. D. (1998b): Spectral analysis of highly aliased sea-level signals. J. Geophys. Res., 103(C11), 24991–25003.Google Scholar
  28. Ray, R. D. (1999): A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA Tech. Memo., 209478.Google Scholar
  29. Ray, R. D. and G. T. Mitchum (1997): Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr., 40, 135–162.Google Scholar
  30. Ray, R. D., R. J. Eanes and B. F. Chao (1996): Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature, 381, 595–597.Google Scholar
  31. Schwiderski, E. W. (1980): Ocean tides, I, Global ocean tidal equations. Mar. Geod., 3, 161–217.Google Scholar
  32. Shum, C. K., P. L. Woodworth, O. B. Andersen, G. Egbert, O. Francis, C. King, S. Klosko, C. Le Provost, X. Li, J. Molines, M. Parke, R. Ray, M. Schlax, D. Stammer, C. Tierney, P. Vincent and C. Wunsch (1997): Accuracy assessment of recent ocean tide models. J. Geophys. Res., 102(C11), 25173–25194.Google Scholar
  33. Smithson, M. J. (1992): Pelagic tidal constants—3. IAPSO Publication Scientifique No. 35. Published by the International Association for the Physical Sciences of the Ocean (IAPSO) of the International Union of Geodesy and Geophysics, 191 pp.Google Scholar
  34. Wahr, J. M. (1981): Body tides on an elliptical, rotating, elastic, oceanless Earth. Geophys. J. R. Astr. Soc., 64, 677–703.Google Scholar
  35. Wahr, J. M. and T. Sasao (1981): A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free “core nutation”. Geophys. J. R. Astr. Soc., 64, 747–765.Google Scholar

Copyright information

© The Oceanographic Society of Japan 2000

Authors and Affiliations

  • Koji Matsumoto
    • 1
  • Takashi Takanezawa
    • 2
  • Masatsugu Ooe
    • 3
  1. 1.Division of Earth RotationNational Astronomical ObservatoryMizusawaJapan
  2. 2.The Graduate University for Advanced StudiesMizusawaJapan
  3. 3.Division of Earth RotationNational Astronomical ObservatoryMizusawaJapan

Personalised recommendations