Journal of Computer-Aided Molecular Design

, Volume 15, Issue 5, pp 395–410 | Cite as

Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors

  • Wolfgang Sippl
  • Jean-Marie Contreras
  • Isabelle Parrot
  • Yveline M. Rival
  • Camille G. Wermuth

Abstract

The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2LOO=0.937, q2L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.

acetylcholinesterase inhibitors CoMFA Docking GOLPE GRID 3D QSAR structure-based design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kowall, N.W., Alzheimer Disease and Associated Disorders, 13 (1999) 11.Google Scholar
  2. 2.
    Fine, R.E., Alzheimer Disease and Associated Disorders, 13 (1999) 82.Google Scholar
  3. 3.
    Davies, P. and Maloney, A., Lancet, 2 (1976) 1403.Google Scholar
  4. 4.
    Terry, R.D., Masliah, E. and Salmon, D.P., Ann. Neurol., 30 (1991) 572.Google Scholar
  5. 5.
    Giacobini, E., Jpn J. Pharmacol., 74 (1997) 225.Google Scholar
  6. 6.
    Wagstaff, A.J. and McTavish, D., Drugs Aging, 4 (1994) 510.Google Scholar
  7. 7.
    Bryson, H.M. and Benfield, P., Drugs Aging, 10 (1997) 234.Google Scholar
  8. 8.
    Fulton, B. and Benfield, P., Drugs Aging, 9 (1996) 60.Google Scholar
  9. 9.
    Enz, A., Boddeke, H., Gray, J. and Spiegel, R., Ann. N.Y. Acad. Sci., 640 (1991) 272.Google Scholar
  10. 10.
    Inestrosa, N.C., Alvarez, A., Perez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O., I.; Soto, C. and Garrido, A., Neuron, 16 (1996) 881.Google Scholar
  11. 11.
    Giacobini, E.; Mori, F. and Lai, C.C., Ann. N.Y. Acad. Sci., 777 (1996) 393.Google Scholar
  12. 12.
    Taylor, P. and Lappi, S., Biochemistry, 14 (1975) 1989.Google Scholar
  13. 13.
    Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M. and Hirth, C., Eur. J. Biochem., 219 (1994) 155.Google Scholar
  14. 14.
    Contreras, J.M., Parrot, I., Sippl, W., Rival, Y.M. and Wermuth, C.G., J. Med. Chem. (2000) submitted.Google Scholar
  15. 15.
    Wermuth, C.G. and Exinger, A., Agressologie, 13 (1972) 285.Google Scholar
  16. 16.
    Sussman, J.L. and Silman, I., Science, 253 (1991) 872.Google Scholar
  17. 17.
    Harel, M. and Sussman, J.L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9031.Google Scholar
  18. 18.
    Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P. and Sussman, J.L., Nat. Struct. Biol., 4 (1997) 57.Google Scholar
  19. 19.
    Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.Google Scholar
  20. 20.
    Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309.Google Scholar
  21. 21.
    Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.Google Scholar
  22. 22.
    Wang, R., Liu, L., Lai, L. and Tang, Y., J. Mol. Model., 4 (1998) 379.Google Scholar
  23. 23.
    Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput. Aid. Mol. Des., 14 (2000) 435.Google Scholar
  24. 24.
    Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., J. Med. Chem., 36 (1993) 4152.Google Scholar
  25. 25.
    Ortiz, A.R., Pastor, M., Palomer, A., Cruciani. G¤ Gago, F. and Wade, R.C., J. Med. Chem., 40 (1997) 1136.Google Scholar
  26. 26.
    Cho, S.J, Garsia, M.L., Bier, J. and Tropsha, A., J. Med. Chem., 39 (1996) 5064.Google Scholar
  27. 27.
    Vaz, R.J., McLEan, L.R. and Pelton, J.T., J. Comput. Aid. Mol. Des., 12 (1998) 99.Google Scholar
  28. 28.
    Sippl, W., J. Comput. Aid. Mol. Des., 14 (2000) 559.Google Scholar
  29. 29.
    Contreras, J.M., Rival, Y., Chayer, S., Bourguignon, J.J. and Wermuth, C.G., J. Med. Chem., 42 (1999) 730.Google Scholar
  30. 30.
    Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, J. and Featherstone, R.M. Biochem. Pharmacol., 7 (1961) 88.Google Scholar
  31. 31.
    Allen, F.H., Kennard, O. and Watson, D.G., Struct. Correl., 1 (1994) 71.Google Scholar
  32. 32.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and Weiner, P.J., J. Am. Chem. Soc. 106 (1984) 765.Google Scholar
  33. 33.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 13 (1986) 230.Google Scholar
  34. 34.
    Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.Google Scholar
  35. 35.
    Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.T. and McCammon, J.A., Comput. Phys. Commun., 91 (1995) 57.Google Scholar
  36. 36.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  37. 37.
    Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput. Aid. Mol. Des., 8, (1994) 243.Google Scholar
  38. 38.
    Goodsell, D.S., Morris G.M. and Olson, A.J., J. Mol. Recognit., 9 (1996) 1.Google Scholar
  39. 39.
    Rao, M.J. and Olson, A.J., Prot. Struct. Funct. Gen., 34 (1999) 173.Google Scholar
  40. 40.
    PrGen 1.5.6, Biographics Laboratory, Basel, Switzerland.Google Scholar
  41. 41.
    Vedani, A. and Dunitz, J.D., J. Am. Chem. Soc., 107 (1985) 7653.Google Scholar
  42. 42.
    Vedani, A. and Huhta, D.W., J. Am. Chem. Soc., 112 (1990) 269.Google Scholar
  43. 43.
    GOLPE version 4.0, Multivariate Infometric Analysis, Perugia, Italy.Google Scholar
  44. 44.
    Baroni, M., Constantino, G., Cruciani, G., Riganelli, D, Valigli, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.Google Scholar
  45. 45.
    Cruciani, G. and Watson, K., J. Med. Chem., 37 (1994) 2589.Google Scholar
  46. 46.
    Pastor, M., Cruciani, G. and Clementi, S., J. Med. Chem. 40 (1997) 1455.Google Scholar
  47. 47.
    Oprea, T.I. and Garcia, A.E., J. Comput. Aid. Mol. Des., 10 (1996) 186.Google Scholar
  48. 48.
    Kryger, G., Silman, I. and Sussman, J.L., Structure Fold. Des. 15 (1999) 297.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Wolfgang Sippl
    • 1
  • Jean-Marie Contreras
    • 2
  • Isabelle Parrot
    • 2
  • Yveline M. Rival
    • 2
  • Camille G. Wermuth
    • 2
  1. 1.Institut für Pharmazeutische ChemieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR 7081 du CNRSUniversité Louis Pasteur, Faculté de PharmacieIllkirch CedexFrance

Personalised recommendations