Journal of Applied Phycology

, Volume 13, Issue 2, pp 135–142

An axenic cyclostat of Prochlorococcus PCC 9511 with a simulator of natural light regimes

  • F. Bruyant
  • M. Babin
  • A. Sciandra
  • D. Marie
  • B. Genty
  • H. Claustre
  • J. Blanchot
  • A. Bricaud
  • R. Rippka
  • S. Boulben
  • F. Louis
  • F. Partensky
Article

Abstract

A cyclostat was designed for growing the oceanic oxyphotobacterium Prochlorococcus PCC 9511. Culture of this organism, known to bedifficult to grow, was mastered for a large volume. Prochlorococcusgrew well and axenic conditions were maintained for up to 15 days. Wedesigned an illumination system allowing a smooth bell-shaped irradiancecurve reaching almost 1000 μmol quanta m-2 s-1 tobe obtained. Cell division was strongly synchronised under theseillumination conditions, which were close to those found at low latitude inthe upper layer of ocean. The described device is particularly well suited tomake experiments requiring up to 6 L per day of well synchronised,exponentially-growing Prochlorococcus culture.

cyclostat Prochlorococcus culture axenic cycle phytoplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackleson SG, Spinrad RW (1988) Size and refractive index of individual marine particulates: a flow cytometric approach. Appl. Opt. 27: 1270–1277.Google Scholar
  2. Falkowski PG, Owens TG (1980) Light-shade adaptation. Plant Physiol. 66: 592–595.Google Scholar
  3. Groeneweg J, Soeder CJ (1978) An improved culture tube for axenic cultures of microalgae. Br. Phycol. J. 13: 337–340.Google Scholar
  4. Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. Photosynthetic energy conversion and growth efficiency. J. Phycol. 25: 462–471.Google Scholar
  5. Kroon BMA, Van Hes UM, Mur LR (1992) An algal cyclostat with computer-controlled dynamic light regime. Hydrobiologia 238: 63–70.Google Scholar
  6. Kroon BMA, Dijkman NA (1996) Photosystem II quantum yields, off-line measured P/I parameters and carbohydrate dynamics in Chlorella vulgaris grown under a fluctuating light regime and its application for optimizing mass cultures. J. appl. Phycol. 8: 313–324.Google Scholar
  7. Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser. 116: 259–275.Google Scholar
  8. Morel A (1991) Light and marine photosynthesis: a spectral model with geochemical and climatological implications. Prog. Oceanogr. 26: 263–306.Google Scholar
  9. Morel A, Ahn YW, Partensky F, Vaulot D, Claustre H (1993) Prochlorococcus and Synechococcus: a comparative study of their size, pigmentation and related optical properties. J. mar. Res. 51: 617–649.Google Scholar
  10. Partensky F, Blanchot J, Vaulot D (1999a) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy L, Larkum AWD (eds), Marine Cyanobacteria. Bull. Inst. Océanogr. Monaco, n° spécial 19, pp. 431–449.Google Scholar
  11. Partensky F, Hess WR, Vaulot D (1999b) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63: 106–127.Google Scholar
  12. Rippka R, Coursin T, Hess WR, Lichtlé C, Scanlan DJ, Palinska KA, Iteman I, Partensky F, Houmard J, Herdman M (2000) Prochlorococcus marinus Chisholm et al. 1992, subsp. nov. pastoris, strain PCC 9511, the first axenic chlorophyll a2/b2–containing cyanobacterium (Oxyphotobacteria). Int. J. syst. evol. Microbiol. 50: 1833–1847.Google Scholar
  13. Sciandra A, Gistan J, Collos Y, Descolas-Gros C, Leboulanger C, Martin-Jézéquel V, Denis M, Lefèvre D, Copin-Montégut C, Avril B (1997) Growth compensating phenomena in continuous culture of Dunaliella tertiolecta limited simultaneously by light and nitrate. Limnol. Oceoanogr. 52: 1325–1339.Google Scholar
  14. Shimada A, Maruyama T, Miyachi S (1996) Vertical distributions and photosynthetic action spectra of two oceanic picophytoplankters, Prochlorococcus marinus and Synechococcus sp. Mar. Biol. 127: 15–23.Google Scholar
  15. Stramski D, Reynolds RA (1993) Diel variations in the optical properties of a marine diatom. Limnol. Oceanogr. 38: 1347–1364.Google Scholar
  16. Vaulot D, Marie D, Olson RJ, Chisholm SW (1995) Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268: 1480–1482.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • F. Bruyant
    • 1
  • M. Babin
    • 1
  • A. Sciandra
    • 2
  • D. Marie
    • 3
  • B. Genty
    • 4
  • H. Claustre
    • 1
  • J. Blanchot
    • 3
  • A. Bricaud
    • 1
  • R. Rippka
    • 5
  • S. Boulben
    • 3
  • F. Louis
    • 1
  • F. Partensky
    • 3
  1. 1.Laboratoire de Physique et Chimie MarinesUniversité Pierre et Marie Curie and CNRSVillefranche-sur-Mer CEDEXFrance
  2. 2.Laboratoire d'Océanographie Biologique et Ecologie du Plancton MarinUniversité Pierre et Marie Curie and CNRSVillefranche-sur-Mer CEDEXFrance
  3. 3.Station BiologiqueUniversité Pierre et Marie Curie and CNRSRoscoffFrance
  4. 4.Laboratoire d'Ecophysiologie VégétaleUniversité Paris Sud and CNRSOrsayFrance
  5. 5.Département de Biochimie et Génétique Moléculaire, Institut PasteurUnité de Physiol Microbienne (CNRS URA 1129)Paris CEDEX 15France

Personalised recommendations