Journal of Applied Phycology

, Volume 13, Issue 2, pp 117–125 | Cite as

Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis

  • Ji Young Cho
  • Eun-Hee Kwon
  • Jae-Suk Choi
  • Sung-Youl Hong
  • Hyun-Woung Shin
  • Yong-Ki Hong

Abstract

Twenty-seven species of common seaweeds from the coast of Korea havebeen screened for antifouling activity. The seaweed extracts were tested inlaboratory assays against the marine fouling green alga Enteromorphaprolifera and the blue mussel Mytilus edulis. Tissue growth, sporesettlement, zygote formation and germlings of the E. prolifera wereinhibited by methanol extracts of the seaweed Ishige sinicola (= I. foliacea) and Sargassum horneri. Spore settlement was stronglyinhibited by using extract concentrations as low as 30 μg mL-1with I. sinicola and 120 μg mL-1 with S. horneri. The repulsive activity of the foot of the mussel was completely inhibited bymethanol extracts of I. sinicola and Scytosiphon lomentaria atconcentrations of 40 μg per 10 μL drop supplied to eachmussel. These extracts also showed strong antifouling activities onlarval settlement with, respectively, no or only 6% of the spat settlingwhen a test concentration of 0.8 mg mL-1 was used. This work isthe first stage towards the development of novel antifouling agents frommarine macroalgae.

antifouling seaweed extract Ishige sinicola Scytosiphon lomentaria Sargassum horneri Enteromorpha prolifera mussel Mytilus edulis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumont AR, Budd MD (1984) High mortality of the larvae of the common mussel at low concentrations of tributyltin. Mar. Pollut. Bull. 15: 402–405.Google Scholar
  2. Cho JY, Jin HJ, Lim HJ, Whyte JNC, Hong YK (1999) Growth activation of the microalga Isochrysis galbana by the aqueous extract of the seaweed Monostroma nitidum. J. appl. Phycol. 10: 561–567.Google Scholar
  3. Dalley R (1989) Legislation affecting tributylin antifoulings. Biofouling 1: 363–366.Google Scholar
  4. de Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL, King RJ (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8: 259–271.Google Scholar
  5. Devi P, Vennam J, Naik CG, Parameshwaran PS, Raveendran TV, Yeshwant KS (1998) Antifouling activity of Indian marine invertebrates against the green mussel Perna viridis L. J. mar. Biotechnol. 6: 229–232.Google Scholar
  6. Fletcher RL (1989) A bioassay technique using the marine fouling alga Enteromorpha. Int. Biodeterior. 25: 407–422.Google Scholar
  7. Hall LW Jr, Pinkney AE (1985) Acute and sublethal affects of organotin compounds on aquatic biota: An interpretative literature evaluation. CRC Crit. Rev. Toxicol. 14: 159–209.Google Scholar
  8. Hayashi Y, Miki W (1996) A newly developed bioassay system for antifouling substance using the blue mussel, Mytilus edulis galloprovincialis. J. mar. Biotechnol. 4: 127–130.Google Scholar
  9. Hudson JB, Kim JH, Lee MK, DeWreede RE, Hong YK (1998) Antiviral compounds in extracts of Korean seaweeds: Evidence for multiple activities. J. appl. Phycol. 10: 427–434.Google Scholar
  10. Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. appl. Phycol. 12: 37–43.Google Scholar
  11. Jin HJ, Kim JH, Sohn CH, DeWreede RE, Choi TJ, Tower GHN, Hudson JB, Hong YK (1997a) Inhibition of Taq DNA polymerase by seaweed extracts from British Columbia, Canada and Korea. J. appl. Phycol. 9: 383–388.Google Scholar
  12. Jin HJ, Seo GM, Cho YC, Hwang EK, Sohn CH, Hong YK (1997b) Gelling agents for tissue culture of the seaweed Hizikia fusiformis. J. appl. Phycol. 9: 489–493.Google Scholar
  13. Kim JH, Hudson JB, Huang AM, Bannister K, Jin H, Choi TJ, Towers GHN, Hong YK (1997) Biological activities of seaweed extracts from British Columbia, Canada, and Korea. I. Antiviral activity. Can. J. Bot. 75: 1656–1660.Google Scholar
  14. Kitamura H, Kitahara S, Hirayama K (1992) Lipophilic inducers extracted from Corallina pilulifera for larval settlement and metamorphosis of two sea urchins Pseudocentrotus depressus and Anthocidaris crassispina. Nippon Suisan Gakkaishi 58: 75–78.Google Scholar
  15. Miki W, Kon-ya K, Mizobuchi S (1996) Biofouling and marine biotechnology: New antifoulants from marine invertebrates. J. mar. Biotechnol. 4: 117–120.Google Scholar
  16. Phillips DW, Towers GHN (1982) Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and within-thallus measurements of lanosol levels in Rhodomela larix (Turner) C. Agardh. J. exp. mar. Biol. Ecol. 58: 285–293.Google Scholar
  17. Provasoli L (1968) Media and prospects for cultivation of marine algae. In Watanabe A, Hattori A (eds), Cultures and Collections of Algae. Jap. Soc. Plant Physiol.: 63–75.Google Scholar
  18. Schmitt TM, Hay ME, Lindquist N (1995) Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76: 107–123.Google Scholar
  19. Shin HW (1998) Antifouling action of zosteric acid and copper on spores of Ulva fasciata Delile. Algae 13: 271–274.Google Scholar
  20. Sieburth J, Conover JT (1965) Sargassum tannin, an antibiotic which retards fouling. Nature 208: 52–53.Google Scholar
  21. Walters LJ, Hadfield MG, Smith CM (1996) Waterborne chemical compounds in tropical macroalgae: positive and negative cues for larval settlement. Mar. Biol. 126: 383–393.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ji Young Cho
    • 1
  • Eun-Hee Kwon
    • 1
  • Jae-Suk Choi
    • 1
  • Sung-Youl Hong
    • 1
  • Hyun-Woung Shin
    • 2
  • Yong-Ki Hong
    • 1
  1. 1.Department of BiotechnologyPukyong National UniversityNamku, PusanKorea
  2. 2.Department of Marine BiotechnologySoonchunhyang UniversityAsanKorea

Personalised recommendations