Real-Time Systems

, Volume 21, Issue 1–2, pp 7–41 | Cite as

Σynergos—Synergetic Vision Research

  • Odemir Martinez Bruno
  • Roberto M. CesarJr.
  • Luis A. Consularo
  • Luciano da Fontoura Costa


This paper reports the development of a powerful andversatile laboratory for vision research, namely Σynergos,which has been developed and implemented under Delphi/Windowsin a distributed systems of microcomputers. The main paradigmunderlying the whole approach consists in integrating severalconcepts and techniques into a single computing environment,i.e. Σynergos, in such a way that the requisitesand possibilities of each of the constituent components complementone another and the thus obtained result becomes greater thanthe sum of its parts. The components of Σynergosinclude distributed system capabilities and a number of librariescontaining algorithms for: computer vision, modeling and simulationof biological visual systems, data and classification analysis,software validation and comparative evaluation, Internet, off-the-shelfapplication, image databases, artificial intelligence, data mining,and visualization resources. In this paper special emphasis isplaced upon the Internet, distributed implementation and biologicalvision. After outlining the principal requisites and potentialsunderlying each of such components, some specific situationsof interest arising from the integration of two or more of suchelements are described and discussed. Details concerning theintegration with Internet and the implementation of the laboratoryas a distributed system are provided, and a complete case-exampleis presented. This applications regards the implementation ofa psychophysical experiment aimed at investigating human perceptionof pictorial complexity, including the derivation of a mathematic-computationalframework modeling such a perception as well as the use of theInternet as a source of stimuli and for reporting the obtainedresults. In addition, the mathematic-computational model is derivedby using a parallel version of the genetic algorithm runningon the distributed system of PCs. The obtained encouraging resultssubstantiate the potential of this vision laboratory for multidisciplinaryvision research.

Computer vision web-based applications image databases distributed systems visual perception data mining parallel computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anand, S. S., Scotney, B. W., Tan, M. G., McClean, S. I., Bell, D. A., Hughes, J. G., and Magill, I. C. 1997. Designing a kernel for data mining. IEEE Expert: Intelligent Systems & Their Applications 12(2): 65-74.Google Scholar
  2. Barlow, H. B., and Mollon, J. D. 1982. The Senses, Cambridge University Press.Google Scholar
  3. Barman, H., Granlund, G., and Haglund, L. 1993. Feature extraction for computer-aided analysis of mammograms. International Journal of Pattern Recognition and Artificial Intelligence 7(6): 1339-1356.Google Scholar
  4. Bruno, O. M., and Costa, L. F. 1997. Versatile real-time vision based on a distribuited system of personal computers. Proc. IEEE International Conference on Engineering of Complex Computer Systems. Como, Italy, pp. 174-179.Google Scholar
  5. Bruno, O. M., Cesar Jr., R. M., Consularo, L. A., and Costa, L. F. 1998. Automatic feature selection for biological shape classification in Εynergos. Proceedings 1998 International Symposium on Computer Graphics, Image Processing and Vision. Rio de Janeiro, RJ, IEEE Computer Society Press, pp. 363-370.Google Scholar
  6. Castleman, K. R. 1996. Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  7. Cesar Jr., R. M., and Costa, L. F. 1997. Semi-automated dendrogram generation for neural shape analysis. Proc. Simpóosio Brasileiro de Computaçcão Gráfica e Processamento de Imagens (SIBGRAPI-97, Campos do Jordão, SP, Out 1997), IEEE Computer Society Press, pp. 147-154. ( /ART10/.)Google Scholar
  8. Cesar Jr., R. M., and Costa, L. F. 1998. Neural cell classification by wavelets and multiscale curvature. BiologicalCybernetics 79(4): 347-360.Google Scholar
  9. Chang, S. F., Smith, J. R., Meng, H. J., Wang, H., and Zhong, D. 1997. Finding images/videos in large archives-Columbia's content based visual query project. D-Lib Magazine February 1997. ( /february97/columbia/02chang.html.)Google Scholar
  10. Chen, H., Schuffels, C., and Orwig, R. 1996. Internet categorization and search: A self-organizing approach. Journal of Visual Communication and Image Representation 7(1): 88-102.Google Scholar
  11. Cho, K., Meer, P., and Cabrera, J. 1997. Performance assessment through bootstrap. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11): 1185-1198.Google Scholar
  12. Cios, K., Pedrycz, W., and Swiniarski, R. 1998. Data mining methods for knowledge discovery. Kluwer.Google Scholar
  13. Coelho, R., and Costa, L. F. 1997. Morphologically realistic neural networks. Proceedings Third IEEE International Conference on Engineering of Complex Computer Systems. Como, Italy, pp. 223-228.Google Scholar
  14. Costa, L. F., Roda, V. O., and Köberle, R. 1994. A biologically-inspired system for visual pattern recognition. Proceedings IEEE International Symposium on Industrial Electronics. Santiago, Chile, pp. 25-30.Google Scholar
  15. Costa, L. F., Cesar Jr., R. M., Coelho, R. C., and Tanaka, J. S. 1998. Perspective on the analysis and synthesis of morphologically realistic neural networks. In R. Poznanski (ed.) Modeling in the neurosciences: From ionic channels to neural networks. Gordon and Breach Science Publishers.Google Scholar
  16. Costa, L. F., and Velte, T. 1999. Automatic characterization and classification of ganglion cells from the salamander retina. Journal of Comparative Neurology 404(1): 33-51.Google Scholar
  17. Daugman, J. G. 1988. Complete discrete 2-D gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal Processing 36(7): 1169-1179.Google Scholar
  18. Demigny, D., and Kamlé, T. 1997. A discrete expression of Canny's criteria for step edge detector performances evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11): 1199-1211.Google Scholar
  19. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. S. 1996. PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Network Parallel Computing. MIT Press.Google Scholar
  20. Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.Google Scholar
  21. Hearst, M. A. 1997. Interfaces for searching the web. Scientific American 276(3): 68-72.Google Scholar
  22. Heath, M. D., Sarkar, S., Sanocki, T., and Bowyer, K. W. 1997. A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(12): 1338-1359.Google Scholar
  23. ICI-INTERNET. 1996. Special section-Video/Image coding and transmission for the Internet. In (P. Delogne, ed.) Proc. IEEE International Conference on Image Processing (ICIP-96), (Lausanne, Switzerland, September 16-19, 1996). IEEE, Piscataway, NJ.Google Scholar
  24. Jain, R. 1997. Visual information management. Communications of the ACM 40(12): 31-32.Google Scholar
  25. Jakobovits R. 1994. The design and implementation of a database environment for vision research. Univ. of Washington Technical Report UW-CSE-971204.Google Scholar
  26. Jakobovits, R., Shapiro, L., and Tanimoto, S. 1995. Implementing multi-level queries in a database environment for vision research. In IS&T SPIE Symposium on Electronic Imaging: Science & Technology.Google Scholar
  27. Jakobovits, R., Lewis, L., Ahrens, J., Shapiro, L., Tanimoto, S., and Brinkley, J. F. 1996. A visual database environment for scientific research. Journal of Visual Languages and Computing 7: 361-375.Google Scholar
  28. JordÀn, R., and Lotufo, R. 1996. Interactive digital image processing course on theWorldWideWeb, In (P. Delogne ed.) Proc. IEEE International Conference on Image Processing (ICIP-96) (Lausanne, Switzerland). IEEE, Piscataway, NJ.Google Scholar
  29. Lynch, C. 1997. Searching the INTERNET. Scientific American 276(3): 52-56.Google Scholar
  30. Manjunath, B. S., and Ma, W. Y. 1996. Browsing large satellite and aerial photographs. In (P. Delogne ed.) Proc. IEEE International Conference on Image Processing (ICIP-96) (Lausanne, Switzerland, September 16-19, 1996). IEEE, Piscataway, NJ.Google Scholar
  31. Marr, D. 1982. Vision. W. H. Freeman and Company.Google Scholar
  32. Mitchell, M. 1996. An Introduction to Genetic Algorithms. The MIT Press.Google Scholar
  33. O'Leary, D. E. 1997. The INTERNET, INTRANETS, and the AI renaissance. Computer 30(1): 71-78.Google Scholar
  34. Pacheco, P. 1997. Parallel Programming with MPI. Morgan Kaufmann.Google Scholar
  35. Schmid, C., and Mohr, R. 1996. Image retrieval using local characterization. In (P. Delogne ed.) Proc. IEEE International Conference on Image Processing (ICIP-96), (Lausanne, Switzerland). IEEE, Piscataway, NJ.Google Scholar
  36. Sipper, M. 1996. A Brief Introduction to Genetic Algorithms,»moshes/gaGoogle Scholar
  37. Special Issue: Finding the right image-content-based image retrieval systems. IEEE Computer September 1995.Google Scholar
  38. Special Issue: The Internet-Filfilling the promise. Scientific American 276(3), March 1997.Google Scholar
  39. Special Issue: Visual information management. Communications of the ACM 40(12), December 1997.Google Scholar
  40. Stix, G. 1997. Finding pictures in the WEB. Scientific American 276(3): 54-55.Google Scholar
  41. Tomassini, M. 1995. A survey of genetic algorithms. In (D. Stauffer, ed.) Annual Reviews of Computational Physics, volume III, pp. 87-118.Google Scholar
  42. World Scientific 1995. Also available as: Technical Report 95/137, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland. ( /pages/staff/tomassini/).Google Scholar
  43. Wu, T. C., and Cheng, J. 1997. Retrieving similar pictures from iconic databases using G-Tree. Pattern Recognition Letters 18: 595-603.Google Scholar
  44. Zeki, S. 1993. A vision of the brain. Blackwell Science, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Odemir Martinez Bruno
    • 1
  • Roberto M. CesarJr.
    • 2
  • Luis A. Consularo
    • 3
  • Luciano da Fontoura Costa
    • 4
  1. 1.Department of Computer Science and Statistics, ICMCUniversity of São PauloSão Carlos, SPBrazil
  2. 2.Department of Computer Science, DCC-IME-USPUniversity of São PauloSão Paulo, SPBrazil
  3. 3.Department of Informatics, DIN-UEMState University of MaringaMaringa, PRBrazil
  4. 4.Cybernetic Vision Research Group, DFI-IFSC-USPUniversity of São PauloSão Carlos, SPBrazil

Personalised recommendations