Virus Genes

, Volume 23, Issue 1, pp 5–16

The Genome of Hawaii Virus and its Relationship with other Members of the caliciviridae

  • Maria A. Pletneva
  • Stanislav V. Sosnovtsev
  • Kim Y. Green


Hawaii virus (Hu/NLV/GII/Hawaii virus/1971/US), a member of the genus ‘Norwalk-like viruses’ (NLVs) in the family Caliciviridae, has served as one of the reference strains for the fastidious caliciviruses associated with epidemic gastroenteritis in humans. The consensus sequence of the RNA genome of Hawaii virus was determined in order to establish its relatedness with other members of the family. The RNA genome is 7,513 nucleotides (nts) in length, excluding the 3′-end poly (A) tract, and is organized into three major open reading frames (ORF1, nts 5–5,104; ORF2, nts 5,085–6,692; and ORF3, nts 6,692–7,471). Phylogenetic analysis showed the closest relatedness of Hawaii virus throughout its genome to Lordsdale virus, a Genogroup II NLV. Analysis of the predicted secondary structure of the RNA from the 5′-end of the genome and the putative beginning of the subgenomic RNA showed the presence of two hairpin structures at both ends that are similar to each other and to those of other NLVs.

Hawaii virus Norwalk-like virus calicivirus epidemic gastroenteritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass R.I., Noel J., Ando T., Fankhauser R., Belliot G., Mounts A., Parashar U.D., Bresee J.S., and Monroe S.S., The epidemiology of enteric caliciviruses from humans: A reassessment using new diagnostics. J Infect Dis 181, S254-S261, 2000.PubMedGoogle Scholar
  2. 2.
    Kapikian A. Z., Norwalk and Norwalk-like viruses, in Kapikian A.Z. (ed.), Virus Infections of the Gastrointestinal Tract. Marcel Dekker, Inc., New York, 1994, pp. 471-518.Google Scholar
  3. 3.
    Jiang X., Wang M., Wang K., and Estes M.K., Sequence and genomic organization of Norwalk virus. Virology 195, 51-61, 1993.PubMedGoogle Scholar
  4. 4.
    Lambden P.R., Caul E.O., Ashley C.R., and Clarke I.N., Sequence and genome organization of a human small roundstructured (Norwalk-like) virus. Science 259, 516-519, 1993.PubMedGoogle Scholar
  5. 5.
    Dingle K.E., Lambden P.R., Caul E.O., and Clarke I.N., Human enteric Caliciviridae: The complete genome sequence and expression of virus-like particles from a genetic group II small round structured virus. J Gen Virol 76, 2349-2355, 1995.PubMedGoogle Scholar
  6. 6.
    Liu B., Clarke I.N., and Lambden P.R., Polyprotein processing in Southampton virus, identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 70, 2605-2610, 1996.PubMedGoogle Scholar
  7. 7.
    Jiang X., Wang M., Graham D.Y., and Estes M.K., Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66, 6527-6532, 1992.PubMedGoogle Scholar
  8. 8.
    Glass P.J., White L.J., Ball J.M., Leparc-Goffart I., Hardy M.E., and Estes M.K., Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol, 74, 6581-6591, 2000.PubMedGoogle Scholar
  9. 9.
    Sosnovtsev S.V. and Green K.Y., Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology 277, 193-203, 2000.PubMedGoogle Scholar
  10. 10.
    Wirblich C., Thiel H.J., and Meyers G., Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70, 7974-7983, 1996.PubMedGoogle Scholar
  11. 11.
    Thornhill T.S., Wyatt R.G., Kalica A.R., Dolin R., Chanock R.M., and Kapikian A.Z., Detection by immune electron microscopy of 26-to 27-nm viruslike particles associated with two family outbreaks of gastroenteritis. J Infect Dis 135, 20-27, 1977.PubMedGoogle Scholar
  12. 12.
    Wyatt R.G., Dolin R., Blacklow N.R., DuPont H.L., Buscho R.F., Thornhill T.S., Kapikian A.Z., and Chanock R.M., Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J Infect Dis 129, 709-714, 1974.PubMedGoogle Scholar
  13. 13.
    Lew J.F., Kapikian A.Z., Valdesuso J., and Green K.Y., Molecular characterization of Hawaii virus and other Norwalklike viruses: Evidence for genetic polymorphism among human caliciviruses. J Infect Dis 170, 535-542, 1994.PubMedGoogle Scholar
  14. 14.
    Clarke I.N., and Lambden P.R., Organization and expression of calicivirus genes. J Infect Dis 181, S309-S316, 2000.PubMedGoogle Scholar
  15. 15.
    Ando T., Noel J.S., and Fankhauser R.L., Genetic classification of ‘Norwalk-like viruses’. J Infect Dis 181(Suppl 2), S336-S348, 2000.PubMedGoogle Scholar
  16. 16.
    Liu B.L., Lambden P.R., Gunther H., Otto P., Elschner M., and Clarke I.N., Molecular characterization of a bovine enteric calicivirus: Relationship to the Norwalk-like viruses. J Virol 73, 819-825, 1999.PubMedGoogle Scholar
  17. 17.
    Hardy M.E. and Estes M.K., Completion of the Norwalk virus genome sequence. Virus Genes 12, 287-290, 1996.PubMedGoogle Scholar
  18. 18.
    Lambden P.R., Liu B., and Clarke I.N., A conserved sequence motif at the 5' terminus of the Southampton virus genome is characteristic of the Caliciviridae. Virus Genes 10, 149-152, 1995.PubMedGoogle Scholar
  19. 19.
    Seah E.L., Marshall J.A., and Wright P.J., Open reading frame 1 of the Norwalk-like virus Camberwell: Completion of sequence and expression in mammalian cells. J Virol 73, 10531-10535, 1999.PubMedGoogle Scholar
  20. 20.
    Schreier E., Doring F., and Kunkel U., Molecular epidemiology of outbreaks of gastroenteritis associated with small round structured viruses in Germany in 1997/98. Arch Virol 145, 443-453, 2000.PubMedGoogle Scholar
  21. 21.
    Dolin R., Levy A.G., and Wyatt R.G., Thornhill T.S., Gardner J.D., Viral gastroenteritis induced by the Hawaii agent. Jejunal histopathology and serologic response. Am J Med 59, 761-768, 1975.PubMedGoogle Scholar
  22. 22.
    Devereux J., Haeberli P., and Smithies O., A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395, 1984.PubMedGoogle Scholar
  23. 23.
    Zuker M., Calculating nucleic acid secondary structure. Curr Opin Struct Biol 10, 303-310, 2000.PubMedGoogle Scholar
  24. 24.
    Seah E.L., Gunesekere I.C., Marshall J.A., and Wright P.J., Variation in ORF3 of genogroup 2 Norwalk-like viruses. Arch Virol 144, 1007-1014, 1999.PubMedGoogle Scholar
  25. 25.
    Pletneva M.A., Sosnovtsev S.V., Sosnovtseva S.A., and Green K.Y., Characterization of a recombinant human calicivirus capsid protein expressed in mammalian cells. Virus Res 55, 129-141, 1998.PubMedGoogle Scholar
  26. 26.
    Pelosi E., Lambden P.R., Caul E.O., Liu B., Dingle K., Deng Y., and Clarke I.N., The seroepidemiology of genogroup 1 and genogroup 2 Norwalk-like viruses in Italy. J Med Virol 58, 93-99, 1999.PubMedGoogle Scholar
  27. 27.
    Liu B.L., Viljoen G.J., Clarke I.N., and Lambden P.R., Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 80, 291-296, 1999.PubMedGoogle Scholar
  28. 28.
    Marin M.S., Casais R., Alonso Martin J.M., and Parra F., ATP binding and ATPase activities associated with recombinant rabbit hemorrhagic disease virus 2C-like polypeptide. J Virol 74, 10846-10851, 2000.PubMedGoogle Scholar
  29. 29.
    Dunham D.M., Jiang X., Berke T., Smith A.W., and Matson D.O., Genomic mapping of a calicivirus VPg. Arch Virol 143, 2421-2430, 1998.PubMedGoogle Scholar
  30. 30.
    Boniotti B., Wirblich C., Sibilia M., Meyers G., Thiel H.J., and Rossi C., Identification and characterization of a 3C-like protease from rabbit hemorrhagic disease virus, a calicivirus. J Virol 68, 6487-6495, 1994.PubMedGoogle Scholar
  31. 31.
    Wirblich C., Sibilia M., Boniotti M.B., Rossi C., Thiel H.J., and Meyers G., 3C-like protease of rabbit hemorrhagic disease virus: Identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity. J Virol 69, 7159-7168, 1995.PubMedGoogle Scholar
  32. 32.
    Sosnovtsev S.V., Sosnovtseva S.A., and Green K.Y., Cleavage of the feline calicivirus capsid precursor is mediated by a virusencoded proteinase. J Virol 72, 3051-3059, 1998.PubMedGoogle Scholar
  33. 33.
    Vazquez A.L., Martin Alonso J.M., Casais R., Boga J.A., and Parra F., Expression of enzymatically active rabbit hemorrhagic disease virus RNA-dependent RNA polymerase in Escherichia coli. J Virol 72, 2999-3004, 1998.PubMedGoogle Scholar
  34. 34.
    Zuker M. and Jacobson A.B., Using reliability information to annotate RNA secondary structures. RNA 4, 669-679, 1998.PubMedGoogle Scholar
  35. 35.
    Green K.Y., Kapikian A.Z., Valdesuso J., Sosnovtsev S., Treanor J.J., and Lew J.F., Expression and self-assembly of recombinant capsid protein from the antigenically distinct Hawaii human calicivirus. J Clin Microbiol 35, 1909-1914, 1997.PubMedGoogle Scholar
  36. 36.
    Schreiber D.S., Blacklow N.R., and Trier J.S., The small intestinal lesion induced by Hawaii agent acute infectious nonbacterial gastroenteritis. J Infect Dis 129, 705-708, 1974.PubMedGoogle Scholar
  37. 37.
    Domingo E., Martinez-Salas E., Sobrino F., de la Torre J.C., Portela A., Ortin J., Lopez-Galindez C., Perez-Brena P., Villanueva N., Najera R., et al., The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: Biological relevance — a review. Gene 40, 1-8, 1985.Google Scholar
  38. 38.
    Kolykhalov A.A., Agapov E.V., Blight K.J., Mihalik K., Feinstone S.M., and Rice C.M., Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570-574, 1997.PubMedGoogle Scholar
  39. 39.
    Yanagi M., Purcell R.H., Emerson S.U., and Bukh J., Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci USA 94, 8738-8743, 1997.PubMedGoogle Scholar
  40. 40.
    Miller W.A. and Koev G., Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273, 1-8, 2000.PubMedGoogle Scholar
  41. 41.
    Blight K.J. and Rice C.M., Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA. J Virol 71, 7345-7352, 1997.PubMedGoogle Scholar
  42. 42.
    Kolykhalov A.A., Mihalik K., Feinstone S.M., and Rice C.M., Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 74, 2046-2051, 2000.PubMedGoogle Scholar
  43. 43.
    Zeng L., Falgout B., and Markoff L., Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. J Virol 72, 7510-7522, 1998.PubMedGoogle Scholar
  44. 44.
    Rinehart-Kim J.E., Zhong W.M., Jiang X., Smith A.W., and Matson D.O., Complete nucleotide sequence and genomic organization of a primate calicivirus, Pan-1. Arch Virol 144, 199-208, 1999.PubMedGoogle Scholar
  45. 45.
    Seal B.S., Neill J.D., and Ridpath J.F., Predicted stem-loop structures and variation in nucleotide sequence of 3′ noncoding regions among animal calicivirus genomes. Virus Genes 8, 243-247, 1994.PubMedGoogle Scholar
  46. 46.
    Jang S.K., Pestova T.V., Hellen C.U., Witherell G.W., and Wimmer E., Cap-independent translation of picornavirus RNAs: Structure and function of the internal ribosomal entry site. Enzyme 44, 292-309, 1990.PubMedGoogle Scholar
  47. 47.
    Gutierrez-Escolano A.L., Brito Z.U., del Angel R.M., and Jiang X., Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. J Virol 74, 8558-8562, 2000.PubMedGoogle Scholar
  48. 48.
    Herbert T.P., Brierley I., and Brown T.D., Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. J Gen Virol 78, 1033-1040, 1997.PubMedGoogle Scholar
  49. 49.
    Frolov I. and Schlesinger S., Translation of Sindbis virus mRNA: Analysis of sequences downstream of the initiating AUG codon that enhance translation. J Virol 70, 1182-1190, 1996.PubMedGoogle Scholar
  50. 50.
    Burroughs J.N. and Brown F., Presence of a covalently linked protein on calicivirus RNA. J Gen Virol 41, 443-446, 1978.PubMedGoogle Scholar
  51. 51.
    Neill J.D., Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 17, 145-160, 1990.PubMedGoogle Scholar
  52. 52.
    Meyers G., Wirblich C., and Thiel H.J., Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184, 677-686, 1991.PubMedGoogle Scholar
  53. 53.
    Sosnovtseva S.A., Sosnovtsev S.V., and Green K.Y., Mapping of the feline calicivirus proteinase responsible for autocatalytic processing of the nonstructural polyprotein and identification of a stable proteinase-polymerase precursor protein. J Virol 73, 6626-6633, 1999.PubMedGoogle Scholar
  54. 54.
    Schaffer F.L., Ehresmann D.W., Fretz M.K., and Soergel M.I., A protein, VPg, covalently linked to 36S calicivirus RNA. J Gen Virol 47, 215-220, 1980.PubMedGoogle Scholar
  55. 55.
    Suhy D.A., Giddings T.H., Jr, and Kirkegaard K., Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: An autophagy-like origin for virus-induced vesicles. J Virol 74, 8953-8965, 2000.PubMedGoogle Scholar
  56. 56.
    Herbert T.P., Brierley I., and Brown T.D., Detection of the ORF3 polypeptide of feline calicivirus in infected cells and evidence for its expression from a single, functionally bicistronic, subgenomic mRNA. J Gen Virol 77, 123-127, 1996.PubMedGoogle Scholar
  57. 57.
    Neill J.D., Reardon I.M., and Heinrikson R.L., Nucleotide sequence and expression of the capsid protein gene of feline calicivirus. J Virol, 65, 5440-5447, 1991.PubMedGoogle Scholar
  58. 58.
    Jiang X., Matson D.O., Ruiz-Palacios G.M., Hu J., Treanor J., and Pickering L.K., Expression, self-assembly, and antigenicity of a snow mountain agent — like calicivirus capsid protein. J Clin Microbiol 33, 1452-1455, 1995.PubMedGoogle Scholar
  59. 59.
    Jiang X., Zhong W., Kaplan M., Pickering L.K., and Matson D.O., Expression and characterization of Sapporolike human calicivirus capsid proteins in baculovirus. J Virol Methods 78, 81-91, 1999.PubMedGoogle Scholar
  60. 60.
    Jiang X., Wilton N., Zhong W.M., Farkas T., Huang P.W., Barrett E., Guerrero M., Ruiz-Palacios G., Green K.Y., Green J., Hale A.D., Estes M.K., Pickering L.K., and Matson D.O., Diagnosis of human caliciviruses by use of enzyme immunoassays. J Infect Dis 181, S349-S359, 2000.PubMedGoogle Scholar
  61. 61.
    Leite J.P., Ando T., Noel J.S., Jiang B., Humphrey C.D., Lew J.F., Green K.Y., Glass R.I., and Monroe S.S., Characterization of Toronto virus capsid protein expressed in baculovirus. ArchVirol 141, 865-875, 1996.Google Scholar
  62. 62.
    Parker S.P., Cubitt W.D., and Jiang X., Enzyme immunoassay using baculovirus-expressed human calicivirus (Mexico) for the measurement of IgG responses and determining its seroprevalence in London, UK. J Med Virol 46, 194-200, 1995.PubMedGoogle Scholar
  63. 63.
    Jiang X., Espul C., Zhong W.M., Cuello H., and Matson D.O., Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol 144, 2377-2387, 1999.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Maria A. Pletneva
    • 1
  • Stanislav V. Sosnovtsev
    • 1
  • Kim Y. Green
    • 1
  1. 1.Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations