Biodegradation

, Volume 11, Issue 2–3, pp 85–105

Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria

  • Alfred M. Spormann
  • Friedrich Widdel
Article

Abstract

Aromatic and aliphatic hydrocarbons are the main constituents of petroleum and its refined products. Whereas degradation of hydrocarbons by oxygen-respiring microorganisms has been known for about a century, utilization of hydrocarbons under anoxic conditions has been investigated only during the past decade. Diverse strains of anaerobic bacteria have been isolated that degrade toluene anaerobically, using nitrate, iron(III), or sulfate as electron acceptors. Also, other alkylbenzenes such as m-xylene or ethylbenzene are utilized by a number of strains. The capacity for anaerobic utilization of alkylbenzenes has been observed in members of the α-, β-, γ- and δ-subclasses of the Proteobacteria. Furthermore, denitrifying bacteria and sulfate-reducing bacteria with the capacity for anaerobic alkane degradation have been isolated, which are members of the β- and δ-subclass, respectively. The mechanism of the activation of hydrocarbons as apolar molecules in the absence of oxygen is of particular interest.The biochemistry of anaerobic toluene degradation has been studied in detail. Toluene is activated by addition to fumarate to yield benzylsuccinate, which is then further metabolized via benzoyl-CoA. The toluene-activating enzyme presents a novel type of glycine radical protein. Another principle of anaerobic alkylbenzene activation has been observed in the anaerobic degradation of ethylbenzene. Ethylbenzene in denitrifying bacteria is dehydrogenated to 1-phenylethanol and further to acetophenone; the latter is also metabolized to benzoyl-CoA. Naphthalene is presumably activated under anoxic conditions by a carboxylation reaction. Investigations into the pathway of anaerobic alkane degradation are only at the beginning. The saturated hydrocarbons are mostlikely activated by addition of a carbon compound rather than by desaturation and hydration, as speculated about in some early studies. An anaerobic oxidation of methane with sulfate as electron acceptor has been documented in aquatic sediments. The process is assumed to involve a reversal of methanogenesis catalyzed by Archaea, and scavenge of an electron-carrying metabolite by sulfate-reducing bacteria. Among unsaturated non-aromatic hydrocarbons, anaerobic bacterial degradation has been demonstrated and investigated with n-alkenes, alkenoic terpenes and the alkyne, acetylene.

alkanes alkylbenzenes anaerobic metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14Google Scholar
  2. Aeckersberg F, Rainey FA & Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 170(5): 361–369Google Scholar
  3. Aharon P & Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 64: 233–246Google Scholar
  4. Al-Bashir B, Cseh T, Leduc R & Samson R (1990) Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl. Environ. Biotechnol. 34: 414–419Google Scholar
  5. Alperin M & Reeburgh WS (1984) Geochemical observations supporting anaerobic methane oxidation. In: Crawford RL & Hanson DL (Eds) Microbial Growth on C-1 Compounds (pp 282–289). American Society for Microbiology, Washington, DCGoogle Scholar
  6. Alperin MJ & Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50: 940–945Google Scholar
  7. Alperin M, Reeburgh W & Whiticar M (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles 2: 279–288Google Scholar
  8. Anders H-J, Kaetzke A, Kaempfer P, Ludwig W & Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 45: 327–333Google Scholar
  9. Anderson RT & Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404: 722–723Google Scholar
  10. Ans J d' (1983) Taschenbuch für Chemiker und Physiker (D'Ans Lax). Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  11. Azoulay E, Chouteau J & Davidovics G (1963) Isolement et caracterisation des enzymes responsables de l'oxydation des hydrocarbures. Biochim. Biophys. Acta 77: 554–567Google Scholar
  12. Ball HA, Johnson HA, Reinhard M & Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 178: 5755–5761Google Scholar
  13. Barnes R. & Goldberg E (1976) Methane production and consumption in anoxic marine sediments. Geology 4: 297–300Google Scholar
  14. Bedessem M, Swoboda-Colberg N & Colberg P (1997) Naphthalene mineralization coupled to sulfate-reduction in aquifer-derived enrichments. FEMS Microbiol. Lett. 152: 213–218Google Scholar
  15. Beller H, Reinhard M & Grbi´c-Gali´c D (1992) Metabolic byproducts of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 58: 3192–3195Google Scholar
  16. Beller H, Ding W-H & Reinhard M (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ. Sci. Technol. 29: 2864–2870Google Scholar
  17. Beller HR& Spormann AM(1997a) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J. Bacteriol. 179: 670–676Google Scholar
  18. Beller HR& Spormann AM(1997b) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl. Environ. Microbiol. 63: 3729–3731Google Scholar
  19. Beller HR& Spormann AM(1998) Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180: 5454–5457Google Scholar
  20. Beller HR & Spormann AM (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiology Letters 178: 147–153.Google Scholar
  21. Beller H.R, Spormann AM, Sharma PK, Cole JR & Reinhard M (1996) Isolation and characterization of a novel toluenedegrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188–1196Google Scholar
  22. Biegert T, Fuchs G & Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238(3): 661–668Google Scholar
  23. Birch L & Bachofen R (1988) Microbial production of hydrocarbons. In: Rehm H-J (Ed) Biotechnology, Vol 6b(pp 71–99). VCH, WeinheimGoogle Scholar
  24. Blair N & Aller R (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim. Cosmochim. Acta 59: 3707–3715Google Scholar
  25. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U & Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626Google Scholar
  26. Bregnard TP-A, Höhener P, Häner A & Zeyer J (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ. Toxicol. Chem. 15: 299–307Google Scholar
  27. Bregnard T.P-A, Häner A, Höhener P & Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl. Environ. Microbiol. 63(5): 2077–2081Google Scholar
  28. Britton L (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson TD (Ed) Microbial Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New York, BaselGoogle Scholar
  29. Buckel W (1992) Unusual dehydrations in anaerobic bacteria. FEMS Microbiol. Rev. 88: 211–232Google Scholar
  30. Bühler M& Schindler J (1984) Aliphatic hydrocarbons. In: Kieslich K (Ed) Biotechnology (pp 329–385). VCH, WeinheimGoogle Scholar
  31. Burland S & Edwards E (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529–533Google Scholar
  32. Caldwell ME, Garrett RM, Prince RC & Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfatereducing conditions. Environ. Sci. Technol. 32: 2191–2195Google Scholar
  33. Champion KM, Zengler K & Rabus R (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J. Mol. Microbiol. Biotechnol. 1: 157–164Google Scholar
  34. Chee-Sanford JC, Frost JW, Fries MR, Zhou J & Tiedje JM (1996). Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl. Environ. Microbiol. 62: 964–973Google Scholar
  35. Chen CI & Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl. Microbiol. Biotechnol. 48: 121–128Google Scholar
  36. Chouteau J, Azoulay E & Senez J (1962) Anaerobic formation of n-hept-1-ene from n-heptane by resting cells of Pseudomonas aeruginosa. Nature 194: 576–578Google Scholar
  37. Coates J.D., Anderson RT & Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62: 1099–1101Google Scholar
  38. Coates JD, Woodward J, Allen J, Philip P & Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63: 3589–3593Google Scholar
  39. Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. In: Jones JG (Ed) Advances in Microbial Ecology, Vol. 14(pp 207–250). Plenum Press, New YorkGoogle Scholar
  40. Coschigano PW (1999) Transcriptional analysis of the tutEtut-FDGH gene cluster from the denitrifying bacterium Thauera aromatica strain T1. Appl. Environ. Microbiol. 66: 1147–1151Google Scholar
  41. Coschigano PW, Wehrman TS & Young LY (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: Putative role of a glycine free radical. Appl. Environ. Microbiol. 64: 1650–1656Google Scholar
  42. Dalton H (1992) Methane oxidation by methanotrophs: physiological and mechanistic implications. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 85–114). Plenum Press, New YorkGoogle Scholar
  43. Davis J & Yarbrough H (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem. Geol. 1: 137–144Google Scholar
  44. Dean JA (1992) Lange's Handbook of Chemistry. McGraw-Hill, New YorkGoogle Scholar
  45. DeBont J & Peck M (1980) Metabolism of acetylene by Rhodococcus A 1. Arch. Microbiol. 127: 99–104Google Scholar
  46. Devol AH & Ahmed SI (1981) Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291: 407–408Google Scholar
  47. Dillon WP & Paull CK (1983) Marine gas hydrates: II Geophysical evidence. In: Cox JL (Ed) Natural Gas Hydrates, Properties, Occurrence and Recovery (pp 73–90). Plenum Press, New YorkGoogle Scholar
  48. Dolfing J, Zeyer J, Binder Eicher P & Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154: 336–341Google Scholar
  49. Edwards EA, Wills LE, Reinhard M & Grbi´c Gali´c D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58: 794–800Google Scholar
  50. Ehrenreich P, Behrends A, Harder J & Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch. Microbiol. 173: 58–64Google Scholar
  51. Eklund H & Fontecave M (1999) Glycyl radical enzymes: a conservative basis for radicals. Structure Fold. Des. 7: R2 57-62Google Scholar
  52. Elvert M & Suess E (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86: 295–300Google Scholar
  53. Evans PJ, Mang DT, Kim KS & Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139–1145Google Scholar
  54. Evans PJ, Ling W, Goldschmidt B, Ritter ER & Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58: 496–501Google Scholar
  55. Ferry J (1993) Methanogenesis. Chapman & Hall, New YorkGoogle Scholar
  56. Fitz W & Arigoni D (1992) Biosynthesis of 15,16-dimethyltriacontanedioic acid (diabolic acid) from [16-2H3]-and [14-2H2]-palmitic acids. J. Chem. Soc. Chem. Commun. 20: 1533–1534Google Scholar
  57. Foss S, Heyen U & Harder J (1998) Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. Syst. Appl. Microbiol. 21: 237–244Google Scholar
  58. Fries MR, Zhou J, Chee-Sanford J. & Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol. 60: 2802–2810Google Scholar
  59. Galliker P, Gräther O, Rümmler M, Fitz W & Arigoni D (1998) New structural and biosynthetic aspects of the unusual core lipids from archaebacteria. Vitamin B12 and B12-proteins (pp 447–458). Wiley-VCH, WeinheimGoogle Scholar
  60. Galushko A, Minz D, Schink B & Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 1: 415–420Google Scholar
  61. Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, Inc., New YorkGoogle Scholar
  62. Gilewicz M, Monpert G, Acquaviva M, Mille G & Bertand J-C (1991) Anaerobic oxidation of 1-n-heptadecene by a marine denitrifying bacterium. Appl. Microbiol. Biotechnol. 36: 252–256Google Scholar
  63. Grbi´c-Gali´c D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260Google Scholar
  64. Griffin W & Traxler R (1981) Some aspects of hydrocarbon metabolism by Pseudomonas. Dev. Ind. Microbiol. 22: 425–435Google Scholar
  65. Grogan DW & Cronan JE (1997) Cyclopropane ring formation in membrane lipids. Microbiol. Mol. Biol. Rev. 61: 429–441Google Scholar
  66. Groh S & Nelson M (1990) Mechanisms of activation of carbonhydrogen bonds by metalloenzymes. In: Davies JA, Watson PL, Liebman JF, Greenberg JA (Eds) Selective Hydrocarbon Activation (pp 305–378). VCH, New York, Weinheim, CambridgeGoogle Scholar
  67. Gurr M & Harwood J (1991) Lipid Biochemistry. Chapman & Hall, LondonGoogle Scholar
  68. Häner A, Höhener P & Zeyer J (1995) Degradation of p-xylene by a denitrifying enrichment culture. Appl. Environ. Microbiol. 61: 3185–3188Google Scholar
  69. Häner A, Höhener P & Zeyer J (1997) Degradation of trimethylbenzene isomers by an enrichment culture under N2O-reducing conditions. Appl. Environ. Microbiol. 63: 1171–1174Google Scholar
  70. Hansen L, Finster K, Fossing H & Iversen N (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aqua. Microb. Ecol. 14: 195–204Google Scholar
  71. Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Mar. Geol. 137: 13–23Google Scholar
  72. Harder J & Foss S (1999) Anaerobic formation of the aromatic hydrocarbon p-cymene from monoterpenes by methanogenic enrichment cultures. Geomicrobiol. J. 16: 295–306Google Scholar
  73. Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R& Widdel F (1999a) Anaerobic oxidation of o-xylene, mxylene, and homologous alkylbenzenes by new types of sulfatereducing bacteria. Appl. Environ. Microbiol. 65: 999–1004Google Scholar
  74. Harms G, Rabus R & Widdel F (1999b) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch. Microbiol. 172: 303–312Google Scholar
  75. Harwood CS, Burchardt G, Herrmann H & Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439–458Google Scholar
  76. Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C, Feil U, Gad'on N, Laempe D, Leuthner B, M. Mohamed ME-S et al. (1998) Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch. Microbiol. 170: 120–131Google Scholar
  77. Heider J & Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243: 577–596Google Scholar
  78. Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P & Zeyer J (1997) In situ analysis of denitrifying toluene-and m-xylenedegrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 65: 2136–2141Google Scholar
  79. Heyen U & Harder J (1998) Cometabolic isoterpinolene formation from isolimonene by denitrifying Alcaligenes defragrans. FEMS Microbiol. Lett. 169: 67–71Google Scholar
  80. Hinrichs K-U, Hayes J, Sylva S, Brewer P & DeLong E (1999) Methane-consuming archaebacteria in marine sediments. Nature 398: 802–805Google Scholar
  81. Hoehler TM, Alperin MJ, D. Albert B & Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8: 451–463Google Scholar
  82. Hylemon P & Harder J (1999) Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol. Rev. 22: 475–488Google Scholar
  83. Iida M & Iizuka H (1970) Anaerobic formation of n-decyl alcohol from n-decene-1 by resting cells of Candida rugosa. Z. Allg. Mikrobiol. 10: 245–252Google Scholar
  84. Iizuka H, Iida M & Fujita S (1969) Formation of n-decene-1 from n-decane by resting cells of Candida rugosa. Z. Allg. Mikrobiol. 9: 223–226Google Scholar
  85. Iversen N & Blackburn T (1981) Seasonal rates of methane oxidation in anoxic marine sediments. Appl. Environ. Microbiol. 41: 1295–1300Google Scholar
  86. Iversen N & Jørgensen B (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30: 944–955Google Scholar
  87. Johnson HA & Spormann AM (1999) In vitro studies on the initial reactions of anaerobic ethylbenzene mineralization. J. Bacteriol. 181: 5662–5668Google Scholar
  88. Jordan A & Reichard P (1998) Ribonucleotide reductases. Ann. Rev. Biochem. 67: 71–98Google Scholar
  89. Kanner D & Bartha R (1982) Metabolism of acetylene by Nocardia rhodochrous. J. Bacteriol. 150: 989–992Google Scholar
  90. Kazumi JC, Caldwell ME, Suflita JM, Lovley DR & Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ. Sci. Technol. 31: 813–818Google Scholar
  91. Knappe J & Wagner AFV (1995) Glycyl free radical in pyruvate formate-lyase: synthesis, structure characteristics, and involvement in catalysis. Methods Enzymol. 258: 343–362Google Scholar
  92. Krieger CJ, Beller HR, Reinhard M & Spormann AM (1999) Initial reactions in anaerobic oxidation of m-xylene in the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403–6410Google Scholar
  93. Kuhn EP, Zeyer J, Eicher P& Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490–496Google Scholar
  94. Langenhoff AAM, Zehnder AJB & Schraa G (1996) Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7: 267–274Google Scholar
  95. Leuthner B & Heider J (1998) A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol. Lett. 166: 35–41Google Scholar
  96. Leuthner B & Heider J (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of _ oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182: 272–277Google Scholar
  97. Leuthner B, Leutwein C, Schulz H, Hoerth P, Haehnel W, Schiltz E, Schaegger H & Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: A new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28: 615–628Google Scholar
  98. Leutwein C& Heider J (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and _-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiol. 145: 3265–3271Google Scholar
  99. Lovley D.R, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP & Siegel OI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–300Google Scholar
  100. Lovley DR & Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864Google Scholar
  101. Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953–958Google Scholar
  102. March J (1992) Advanced Organic Chemistry. John Wiley & Sons, New York.Google Scholar
  103. Martens CS & Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments: 1. Dissolved gases. Limnol. Oceanogr. 22(1): 10–25Google Scholar
  104. McKenna E & Kallio R (1965) The biology of hydrocarbons. Ann. Rev. Microbiol. 19: 183–208Google Scholar
  105. McNally DL, Mihelcic JP & Lueking DR (1998) Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol. 32: 2633–2639Google Scholar
  106. Meckenstock R (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol. Lett. 177: 67–73Google Scholar
  107. Meckenstock R, Krieger R, Ensign S, Kroneck P & Schink B (1999) Acetylene hydratase of Pelobacter acetylenicus: molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. Eur. J. Biochem. 264: 176–182Google Scholar
  108. Metzler DE (1977) Biochemistry: The Chemical Reactions of Living Cells. Academic Press, New York, San Francisco, LondonGoogle Scholar
  109. Mihelcic JR& Luthy RG (1988) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soilwater systems. Appl. Environ. Microbiol. 54: 1182–1187Google Scholar
  110. Monpert G (1996) Relation between denitrification and biodegradation of n-heptadecane in a marine bacterium. C.R. Séances Acad. Sci. Vie. Acad. 319: 805–809Google Scholar
  111. Müller JA, Galushko AS, Kappler A & Schink B (1999) Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287–294Google Scholar
  112. Niehaus W, Kisic A, Torkelson A, Bednarczyk D & Schroepfer G (1970) Stereospecific hydration of the 19 double bond of oleic acid. J. Biol. Chem. 245: 3790–3797Google Scholar
  113. Novelli GD & ZoBell CE (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J. Bacteriol. 47: 447–448Google Scholar
  114. Overmann J, Sandmann G, Hall KJ & Northcote TG (1993) Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat. Sci. 55: 31–39Google Scholar
  115. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, E. Saltzman E & Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436Google Scholar
  116. Phelps CD, Kerkhof LJ & Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol. Ecol. 27(3): 269–279Google Scholar
  117. Platen H & Schink B (1989) Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J. Gen. Microbiol. 135: 883–892.Google Scholar
  118. Rabus R. & Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163: 96–103Google Scholar
  119. Rabus R& Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch. Microbiol. 170: 377–384Google Scholar
  120. Rabus R, Nordhaus R, Ludwig W & Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451Google Scholar
  121. Rabus R, Hansen TA & Widdel F (2000) Dissimilatory sulfate-and sulfur-reducing prokaryotes, in press. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H & Stackebrandt E (Eds) The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community. Springer-Verlag, New YorkGoogle Scholar
  122. Reeburgh W(1976) Methane consumption in Caraco Trench waters and sediments. Earth Planetary Sci. Lett. 28: 337–344Google Scholar
  123. Reeburgh W (1980) Anaerobic methane oxidation: rate depth distribution in Skan Bay sediment. Earth Planet Sci. Lett. 47: 345–352Google Scholar
  124. Reeburgh W & Alperin M (1988) Studies on anaerobic methane oxidation. Mitt Geologisch-Paläontologisches Institut der Universität Hamburg 66: 367–375Google Scholar
  125. Rooney-Varga, JN, Anderson RT, Fraga JL, Ringelberg D & Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65: 3056–3063Google Scholar
  126. Rosner B & Schink B (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten ironsulfur protein. J. Bacteriol. 177: 5767–5772Google Scholar
  127. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW & Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458Google Scholar
  128. Savithiry N, Cheong TK & Oriel P (1997) Production of _-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl. Biochem. Biotechnol. 63-65: 213–220Google Scholar
  129. Schink B (1985a) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31: 69–77Google Scholar
  130. Schink B (1985b) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus. Arch. Microbiol. 142: 295–301Google Scholar
  131. Schocher RJ, Seyfried B, Vazquez F & Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch. Microbiol. 157: 7–12Google Scholar
  132. Scranton MIP, Novelli PC & Loud PA (1984) The distribution and cycling of hydrogen gas in the water of two anoxic marine environments. Limnol. Oceanogr. 29: 993–1003Google Scholar
  133. Senez J & Azoulay E (1961) Déshydrogénation d'hydrocarbures paraffiniques par les suspensions non-proliferantes et les extraits de Pseudomonas aeruginosa. Biochim. Biophys. Acta 47: 307–316Google Scholar
  134. Sluis MK & Ensign SA (1997) Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc. Natl. Acad. Sci. 94: 8456–8461Google Scholar
  135. Sluis MK, Small FJ, Allen JR & Ensign SA (1996) Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2. J. Bacteriol. 178: 4020–4026Google Scholar
  136. So CM & Young LY (1999a) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl. Environ. Microbiol. 65: 2969–2976.Google Scholar
  137. So CM & Young LY (1999b) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl. Environ. Microbiol. 65: 5532–5540Google Scholar
  138. Song B, Young LY & Palleroni NJ (1998) Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition, Int. J. Syst. Bacteriol. 48: 889–894.Google Scholar
  139. Stumm W & Morgan JJ (1981) Aquatic Chemistry. John Wiley & Sons, New York.Google Scholar
  140. Swain H, Somerville H & Cole J (1978) Denitrification during growth of Pseudomonas aeruginosa on octane. J. Gen. Microbiol. 107: 103–112Google Scholar
  141. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria (pp 39–69). In: Frank HA, Young AJ, Britton G & Cogdell RJ (Eds) The Photochemistry of Carotenoids. Kluwer Academic Publishers, DordrechtGoogle Scholar
  142. Thauer RK, Jungerman K & Decker K (1977) Energy conservation in chemotrophic bacteria. Bacteriol. Rev. 41: 100–180Google Scholar
  143. Tissot B & Welte D (1984) Petroluem Formation and Occurrence. Springer Verlag, Berlin.Google Scholar
  144. Traxler R & Bernard J (1969) The utilization of n-alkanes by Pseudomonas aeruginosa under conditions of anaerobiosis. I. Preliminary observations. Int. Biodetn. Bull. 5: 21–25Google Scholar
  145. Wagner F, Zahn W & Bühring U (1967) 1-Hexadecene, an intermediate in the microbial oxidation of n-hexadecane in vivo and in vitro. Angew. Chem. Intern. Ed. Engl. 6: 359–360Google Scholar
  146. Widdel F (1988) Microbiology and ecology of sulfate-and sulfurreducing bacteria. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 469–585). John Wiley & Sons, New York.Google Scholar
  147. White R & CoonM(1980) Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. 49: 315–356Google Scholar
  148. Yang W, Dostal L & Rosazza J (1993) Stereospecificity of microbial hydrations of oleic acid to 10-hydroxystearic acid. Appl. Environ. Microbiol. 58: 281–284Google Scholar
  149. Zatsepina O & Buffett BA (1997) Phase equilibrium of gas hydrate: implications for the formation of hydrate in the deep sea-floor. Geophys. Res. Lett. 24: 1567–1570Google Scholar
  150. Zehnder A & Brock T (1979) Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420–432Google Scholar
  151. Zehnder A & Brock T (1980) Anaerobic methane oxidation: occurrence and ecology. Appl. Environ. Microbiol. 39: 194–204.Google Scholar
  152. Zengler K, Heider J, Rossello-Mora R & Widdel F (1999a) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172: 204–212Google Scholar
  153. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W & Widdel F (1999b) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269Google Scholar
  154. Zhou J, Fries MR, Chee-Sanford JC & Tiedje JM (1995) Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. Nov. Int. J. Syst. Bacteriol. 45: 500–506Google Scholar
  155. Zhang X. & Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Microbiol. 63: 4759–4764Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alfred M. Spormann
    • 1
  • Friedrich Widdel
    • 2
  1. 1.Departments of Civil and Environmental Engineering, and of BiologicalSciencesStanford UniversityStanfordUSA
  2. 2.Max-Planck-Institut für Marine MikrobiologieBremenGermany.e-mail

Personalised recommendations