Wetlands Ecology and Management

, Volume 9, Issue 3, pp 161–180 | Cite as

History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record

  • Jean-Claude Plaziat
  • Carla Cavagnetto
  • Jean-Claude Koeniguer
  • Frédéric Baltzer


The geological record of mangrove plants is based on comparablemorphological characteristics of pollen, fruits and wood, of fossil andmodern species. But this record relies on the assumption that the ecologicaland habitat preferences of ancestral taxa have remained similar throughages. A reexamination of fossil evidence of Avicennia, Pelliciera,Sonneratia, Rhizophora, Bruguiera, Ceriops, etc.reveals that the modern mangrove flora was pantropic by the Eocene, andappears to have originated during Paleocene times. Earlier Paleozoic andMesozoic candidates for a mangrove ecology lack conclusive evidence oftheir exclusive association with tidal environments. It is therefore clear thatcontinental drift had a limited role in the dispersal and development ofmodern mangrove floras. The Eocene/Oligocene boundary crisis appears toherald a beginning of the biogeographic split between the current-dayeastern and western provinces of mangrove plants. But, while the climaticorigins of this major disjunction is not clearly understood, our reassessmentof Tertiary paleoclimates suggests that the major cooling events of themiddle Paleocene, the end of the Eocene and the middle Pliocene were themost likely influences on the evolution of mangrove floras. The associatedinvertebrates, especially molluscs, further support our assertion that amodern mangrove ecosystem was established only during the earliestEocene times. We summarize our interpretation in a set of 9 palinspasticmaps of fossil mangrove genera through their evolution ending with thecurrent, bipartite distribution of present day taxa.

biogeography continental drift mangrove ancestor Mesozoic molluscs paleoclimate paleomangrove palynology Tertiary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aassoumi, H., Broutin, J., El Wartiti, M., Freytet, P., Koeniguer, J.-C., Quessada, C., Simancas, F. and Toutin-Morin, N. 1992. Pedological nodules with cone-in-cone structure in the Permian of Sierra Morena (Spain) and central Morocco. Carbonates and Evaporites 7: 140–149.Google Scholar
  2. Adams, C.G., Lee, D.E. and Rosen, B.R. 1990. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology 77: 289–313.Google Scholar
  3. Berggren, W.A. and Aubry, M.P. 1996. A late Paleocene-early Eocene NW European and North Sea magnetobiochronological correlation network. In: Knox, R.W., Corfield, R.M. and Dunay, R.E. (eds.), Correlation of the Early Paleogene in Northwest 176 Europe, Geological Society. Special Publication 101: 309–352. London.Google Scholar
  4. Bessedik, M. 1981. Une mangrove à Avicennia L. en Méditerannée occidentale au Miocène inférieur et moyen. Implications paléogéographiques. Comptes rendus des séances de l'Académie des Sciences, Paris 293: 469–472.Google Scholar
  5. Bessedik, M. 1984. The Early Aquitanian and Upper Langhian-Lower Serravallian environments in the Nortwestern Mediterranean region. Paléobiologie Continentale 14: 153–179. Montpellier.Google Scholar
  6. Bessedik, M. and Cabrera, L. 1985. Le couple récif-mangrove à San Pau d'Ordal, témoin du maximum transgressif en Méditerannée nord-occidentale (Burdigalien supérieur–Langhien inférieur). Newsl. Strat. 14: 20–35.Google Scholar
  7. Boucot, A.J. 1983. Does evolution take place in an ecological vacuum? II. J. Paleo. 57: 1–30.Google Scholar
  8. Bowerbank, J.S. 1840. A History of Fossil Fruits and Seeds of the London Clay. John Van Voorst, London.Google Scholar
  9. Burchardt, B. 1978. Oxygen isotope paleotemperatures from the Tertiary period in the North Sea area. Nature 275: 121–123.Google Scholar
  10. Caratini, C. 1975. Palynologie des deux formations détritiques éocènes dans le Sud du Bordelais (Gironde); mise en évidence d'une végétation chaude et humide mais non typiquement tropicale. Bulletin de la Société Géologique de France 17(7): 797–802.Google Scholar
  11. Caratini, C., Blasco, F. and Thanikaimoni, G. 1973. Relation between the pollen spectra and the vegetation of a South Indian mangrove. Pollen et Spores 15: 281–292.Google Scholar
  12. Cavagnetto, C. and Anadón, P. 1995. Une mangrove complexe dans le Bartonien du Bassin de l'Ebre (N.E. de l'Espagne). Palaeontographica 236: 147–165.Google Scholar
  13. Cavagnetto, C. and Anadón, P. 1996. Preliminary palynological data on floristic and climatic changes during the Middle Eocene–Early Oligocene of the Eastern Ebro basin, northeast Spain. Rev. Palaeobot. Palynol. 92: 281–305.Google Scholar
  14. Chandler, M.E.J. 1951. Note on the occurrence of mangroves in the London Clay. Proceedings of the Geological Association, London 62: 271–272.Google Scholar
  15. Chandler, M.E.J. 1954. Some Upper Cretaceous and Eocene fruits from Egypt, with appendices by N.Y. Hassan and M.I. Youssef. Bulletin of the British Museum (Nat. Hist.), London. Geol. ser. 2: 147–187.Google Scholar
  16. Chandler, M.E.J. 1961. The lower Tertiary Floras of Southern England. I. Palaeocene floras, London Clay Flora (supplement). British Museum (Nat. Hist.), London.Google Scholar
  17. Chandler, M.E.J. 1978. Supplement to the Lower Tertiary Floras of Southern England. Tertiary Research, Special Paper (5), 47 pp.Google Scholar
  18. Chapman, V.J., 1977. Introduction. In: Goodall, D.W. and Chapman, V.J. (eds.), Wet Coastal Ecosystems, Ecosystem of the World 1, Elsevier Sci. Publ. C°, pp. 1–29, Amsterdam.Google Scholar
  19. Chateauneuf, J.-J. and Nury, D. 1995. La flore de l'Oligocene de Provence méridionale: implications stratigraphiques, environnementales et climatiques. Géologie de la France: 43–55.Google Scholar
  20. Chikhi, H. 1992. Une palynoflore méditerranéenne à subtropicale au Messinien pré-évaporitique en Algérie. Géol. Médit. 19: 19–30.Google Scholar
  21. Churchill, D.M. 1973. The ecological significance of tropical mangroves in the Early Tertiary floras of southern Australia. Special Publication of the Geol. Soc. Aust. 4: 79–86.Google Scholar
  22. Collinson, M.E. 1983. Fossil plants of the London Clay. The Paleontological association, Field guides to fossils n° 1.Google Scholar
  23. Collinson, M.E. 1990. Plant evolution and ecology during the early Cainozoic diversification. Adv. Bot. Res. 17: 1–98.Google Scholar
  24. Collinson, M.E. 1993. Taphonomy and fruiting biology of recent and fossil Nypa. The Palaeontological Association, Special Papers in Palaeontology 49: 165–180.Google Scholar
  25. Collinson, M.E., Boulter, M.C. and Holmes, P.L. 1993. Magnioliophyta ('Angiospermae') In: Benton, M.J. (ed.), The Fossil Record 2, pp. 809–841. Chapman and Hall, London.Google Scholar
  26. Cridland, A.A. 1964. Amyelon in American coal balls. Palaeontology 7: 186–209.Google Scholar
  27. Daley, B. 1972. Some problems concerning the early Tertiary climate of southern Britain. Palaeogeography, Palaeoclimatology, Palaeoecology 11: 177–190.Google Scholar
  28. Denton, G.H., Prentice, M.L. and Burckle, L.H. 1991. Cainozoic History of Antarctic ice sheet. In: Tingey, R.J. (ed.), The Geology of Antarctica. Oxford monographs on geology and geophysics 17, Clarendon Press, pp. 365–433.Google Scholar
  29. Dercourt, J., Ricou, L.E. and Vrielynk, B. (eds.) 1993. Atlas Tethys Palaeoenvironmental maps. BEICIP, 14 maps.Google Scholar
  30. Dolianiti, E. 1955. Frutos de Nipa no paleoceno de Pernambuco, Brasil. Division de Geologia e Mineralogia do Brazil, Boletim 158: 1–36. Dorf, E. 1964. The use of fossil plants in palaeoclimatic interpretation. In: Nairn, A.E.M. (ed.), Problems in Palaeoclimatology, pp. 13–31. NATO conference, Newcastle upon Tyne, Interscience publishers.Google Scholar
  31. Duke, N.C. 1992. Mangrove floristics and biogeography. In: Robertson, A.I. and Alongi, D.M. (eds.), Tropical Ecosystems 41: 63–100. Coastal and Estuarine Studies Series, American Geophysical Union, Washington D.C.Google Scholar
  32. Duke, N.C. 1995. Genetic diversity, distributional barriers and rafting continents–more thoughts on the evolution of mangroves. Hydrobiologia 295: 167–181.Google Scholar
  33. Duke, N.C., Ball, M.C. and Ellison, J.C. 1998a. Factors influencing biodiversity and distributional gradients in mangroves. Gl. Ecol. Biogeogr. Lett. 7: 27–47.Google Scholar
  34. Duke, N.C., Benzie, J.A.H., Goodall, J.A. and Ballment, E.R. 1998b. Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution 52: 1612–1626.Google Scholar
  35. Durand, S. and Ollivier-Pierre, M-F. 1969. Observations nouvelles sur la présence du pollen de palmier Nypa dans l'Eocène de l'ouest de la France et du sud de l'Angleterre. Société géologique et minéralogique de Bretagne, Bulletin 1: 49–59.Google Scholar
  36. Edet, J.J. and Nyong, E.E. 1993. Depositional environments, sealevel history and palaeobiogeography of the late Campanian-Maastrichtian on the Calabar flank, S.E. Nigeria. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 161–175.Google Scholar
  37. Ehrmann, W.U. and Mackensen, A. 1992. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 85–112.Google Scholar
  38. Ellison, A.M., Farnsworth, E.J. and Merkt, R.E. 1999. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Gl. Ecol. Biogeogr. 8: 95–115.Google Scholar
  39. Francis, J.E. 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology 29: 277–294.Google Scholar
  40. Frederiksen, N.O. 1985. Review of Early Tertiary sporomorph paleoecology. American Association of Stratigraphy and Palynology contributions series 15: 1–92.Google Scholar
  41. Garcia, J.P., Philippe, M. and Gaumet, F. 1998. Fossil wood in the Middle-Upper Jurassic marine sedimentary cycles of France: relations with climate, sea-level dynamics and carbonate platform environments. Palaeogeography, Palaeoclimatology, Palaeoecology 141: 199–214.Google Scholar
  42. Gee, C.T. 1990. On the fossil occurence of the mangrove palm Nypa. In: Knobloch, E. and Kvacek, Z. (eds.) Proceedings Symposium on Paleofloristic and Paleoclimatic Changes in the Cretaceous and Tertiary. pp. 315–319. Geological survey, Prague.Google Scholar
  43. Germeraad, J.H., Hopping, G.A. and Muller, R. 1969. Palynology of Tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 6: 189–348.Google Scholar
  44. Graham, A. 1969 Studies in neotropical paleobotany II. The Miocene communities of Veracruz, Mexico. Ann. Missouri Bot.Gard. 63: 787–842Google Scholar
  45. Graham, A. 1995. Diversification of Gulf/Caribbean mangrove communities through Cenozoic times. Biotropica 27: 20–27.Google Scholar
  46. Graham, A. 1999. Late Cretaceous and Cenozoic history of North American Vegetation. Oxford University Press, N.Y.Google Scholar
  47. Graham, A. and Jarzen, D. 1969. Studies in neotropical paleobotany, I. The Oligocene Communities of Puerto Rico. Ann. Missouri Bot. Gard. 56: 308–357.Google Scholar
  48. Gregor, H-G. and Hagn, H. 1982. Fossil fructifications from the Cretaceous-Palaeocene boundary of SW Egypt (Danian, Bir Abu Munqar). Tert. Res. 4: 121–147.Google Scholar
  49. Gruas Cavagnetto, C. 1968. Etude palynologique des divers gisements du Sparnacien du Bassin de Paris. Mémoires de la Société Géologique de France 110: 144 pp.Google Scholar
  50. Gruas Cavagnetto, C. 1987. Nouveaux éléments mégathermes dans la palynoflore éocène du Bassin Parisien. Mémoires et Travaux de l'Institut de Montpellier, Ecole Pratique des Hautes Etudes 17: 207–233.Google Scholar
  51. Gruas-Cavagnetto, C. 1991. Pollens et Dinophycées de l'Ilerdien moyen (Eocène inférieur) de Fordones (Corbières, France). Cahiers de Micropaléontologie, N.S. 6: 51–66.Google Scholar
  52. Gruas-Cavagnetto, C., Laurain, M. and Meyer, R. 1980. Un sol de mangrove fossilisé dans les Lignites du Soissonnais (Yprésien) à Verzenay (Marne). Geobios 16: 795–801.Google Scholar
  53. Gruas-Cavagnetto, C., Tambareau, Y. and Villatte, J. 1988. Données paléoécologiques nouvelles sur le Thanétien et l'Ilerdien de l'avant-pays pyrénéen et de la Montagne Noire. Institut français de Pondichéry, travaux de la section des sciences et techniques 25: 219–235.Google Scholar
  54. Guinet, P. and Gruas-Cavagnetto, C. 1986. Présence du genre Neptunia (Leguminosae, Mimosoideae) à l'Eocène moyen dans le Bassin tertiaire au Nord de la Baie de Seine. Pollen et Spores 28: 167–176.Google Scholar
  55. Hall, R. 1996. Reconstructing Cenozoic SE Asia. In: Hall, R. and Blundell, D. (eds.), Tectonic Evolution of Southeast Asia, Geological Society Special Publication 106: 153–184.Google Scholar
  56. Haseldonckx, P. 1972. The presence of Nypa palms in Europe: a solved problem. Geol. Mijnb. 51: 645–650.Google Scholar
  57. Haseldonckx, P. 1973. The palynology of some Paleogene deposits between the rio Esera and the rio Segre, southern Pyrenees, Spain. Leidse Geol. Med. 49: 145–165.Google Scholar
  58. Hayes, D.E. and Frakes, L.A. 1975. General synthesis. Deep sea drilling project Leg 28. In: Initial report of the Deep Sea Drilling Project Leg 28. pp. 919–942. Government Printing Office, Washington.Google Scholar
  59. Herbig, H.G. and Gregor, H.J. 1990. The mangrove-forming palm Nypa from the early Paleogene of southern Morocco. Paleoenvironment and Paleoclimate. Géologie Méditerranéenne 17: 123–137.Google Scholar
  60. Hornibrook, N. de B. 1992. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. In: Tsuchi, R. and Ingles, J. (eds), Pacific Neogene Environment, Evolution and Events. pp. 83–106. University of Tokyo Press.Google Scholar
  61. Houbrick, R.S. 1984. Revision of higher taxa in genus Cerithidea (Mesogastropoda: Potamididae) based on comparative morphology and biological data. Amer. Malacol. Bull. 2: 1–20.Google Scholar
  62. Itoigawa, J. 1989. Tropical spike in Early Middle Miocene (ca. 16 Ma) of southwest Japan. Proceedings of the international symposium on the Pacific Neogene Continental and Marine Events, Nanjing University Press.Google Scholar
  63. Johnstone, R.E. 1990. Mangrove and mangrove birds in Western Australia. Records of theWestern Australian Museum, suppl. 32, 120 pp.Google Scholar
  64. Kemp, E.M. 1978. Tertiary climatic evolution and vegetation history in the Southeast Indian Ocean region. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 169–208.Google Scholar
  65. Kemp, E.M. and Harris, W.K. 1977. The palynology of Early Tertiary sediments, Ninetyeast ridge, Indian Ocean. Special Papers in Paleontology 19, 70 pp.Google Scholar
  66. Knox, R.W., Corfield, R.M. and Dunay, R.E. (eds.). 1996. Correlation of the Early Paleogene in Northwest Europe. Geological Society, London. Special Publication 101, 480 pp.Google Scholar
  67. Lauriat-Rage, A., Brébion, P., Cahuzac, B., Chaix, C., Ducasse, O., Ginsburg, L., Janin, M.-C., Lozouet, P., Margerel, J.-P., Nascimento, A., Pais, J., Poignant, A., Pouyet, S. and Roman, J. 1993. Palaeontological data about the climatic trend from Chattian to Present along the Northeastern Atlantic frontage. Ciencias da Terra (UNL), Lisboa 12: 167–179.Google Scholar
  68. Le Renard, J. 1990. Le genre Enigmonia Iredale (Mollusca, Bivalvia, Anomiidae) nouveau pour l'Eocène du Bassin de Paris, France. Tert. Res. 12: 89–95.Google Scholar
  69. Lethiers, F. 1988. La moyenne des durées des espèces (MDE): une approche nouvelle de l'évolution. Application aux ostracodes. Comptes Rendus de l'Académie des Sciences, Paris 307: 871–877.Google Scholar
  70. Louvet, P. 1970. Sonneratioxylon aubrevillei n. sp. Comptes Rendus de l'Académie des Sciences, Paris 270: 2268–2271.Google Scholar
  71. Louvet, P. 1972. Sur les affinités de Flacourtioxylon gifaense avec les Rhizophoracées à parenchyme rare. Comptes Rendus du 97e Congrès National des Sociétés Savantes, Nantes, IV: 85–86.Google Scholar
  72. Louvet, P. 1973. Sur les affinités des flores tropicales ligneuses africaines, tertiaires et actuelles. Bulletin de la Société Botanique de France 120: 385–396.Google Scholar
  73. Lozouet, P. 1997. Le domaine atlantique européen au Cénozoïque moyen: diversité et évolution des gastéropodes. Thesis, Museum National d'Histoire Naturelle, Paris.Google Scholar
  74. Macnae, W. 1968. A General Account of the Fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. Adv. Mar. Biol. London 6: 74–270.Google Scholar
  75. Mazer, S.J. and Tiffney, B.H. 1982. Fruits of Wetherellia and Palaeowetherellia (Euphorbiaceae) from Eocene sediments in Virginia and Maryland. Brittonia 34: 300–333.Google Scholar
  76. McCoy, E.D. and Heck, K.L. 1976. Biogeography of corals, seagrasses and mangroves: an alternative to the center of origin concept. Syst. Zool. 25: 201–210.Google Scholar
  77. McIntyre, D.J. 1965. Some new pollen species from New Zealand Tertiary deposits. N.Z. J. Bot. 3: 204–214.Google Scholar
  78. Mepham, R.H. 1983. Mangrove floras of the Southern Continents. Part I, the geographical origin of Indo-Pacific mangrove genera and the development and present status of Australian mangroves. S. Afr. J. Bot. 2: 1–8.Google Scholar
  79. Mepham, R.H. and Mepham, J.S. 1985. The flora of tidal forests. A rationalization of the use of the term 'mangrove'. S. Afr. J. Bot. 51: 77–99.Google Scholar
  80. Muller, J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous–Eocene) in Sarawak, Malaysia. Micropaleontology 14: 1–37.Google Scholar
  81. Muller, J. 1978. New observations on pollen morphology and fossil distribution of the genus Sonneratia (Sonneratiaceae). Rev. Palaeobot. Palynol. Elsevier 26: 277–300.Google Scholar
  82. Muller, J. 1980. Palynological evidence for Paleogene climatic changes. Colloque Palynologie et climats. Mémoire du Muséum National d'Histoire naturelle, Paris, n.s. B 27: 211–218.Google Scholar
  83. Muller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47: 1–146.Google Scholar
  84. Muller, J. and Caratini, C. 1977. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen et Spores 19: 361–389.Google Scholar
  85. Nagy, E. and Kókay, J. 1991. Middle Miocene mangrove vegetation in Hungary. Acta Geol. Hung. 34: 45–52.Google Scholar
  86. Nguyen Tu, T.T., Bocherens, H., Mariotti, A., Baudin, F., Pons, D., Broutin, J., Derenne, S. and Largeau, C. 1999. Ecological distribution of Cenomanian terrestrial plants based on 13C/12C ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 145: 79–93.Google Scholar
  87. Nury, D. 1990. L'Oligocène de Provence méridionale, Stratigraphie, dynamique sédimentaire, reconstitutions paléogéographiques. Documents du Bureau de Recherches Géologiques et Minières 163, 395 pp.Google Scholar
  88. Ollivier-Pierre, M.-F. 1980. Etude palynologique (spores et pollens) de gisements paléogènes du Massif Armoricain. Stratigraphie et paléogéographie. Mémoire de la Société Géologique et Minéralogique de Bretagne 25, 239 pp.Google Scholar
  89. Ollivier-Pierre, M.-F., Gruas-Cavagnetto, C., Roche, E. and Schuller, M. 1987. Eléments de flore de type tropical et variations climatiques au Paléogène dans quelques bassins d'Europe nordoccidentale. Mémoires et Travaux de l'Institut de Montpellier, Ecole Pratique des Hautes Eudes 17: 173–205.Google Scholar
  90. Oyama, K. 1950. Studies of fossil molluscan biocoenosis. 1–biocoenological studies on the mangrove swamps, with description of new species from Yatsuo Group. Rep. Geol. Surv. Japan 132: 1–16.Google Scholar
  91. Parkinson, R.W., De Laune R.D. and White, J.R. 1994. Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. J. Coastal Res. 10: 1077–1086.Google Scholar
  92. Philippe, M. 1992. Une mangrove à conifères au Jurassique en Franche-Comté. Bulletin de l'EUFORBE 5: 10–12.Google Scholar
  93. Philippe, M., Thevenard, F., Barale, G., Ferry, S. and Guignard, G., 1998. Middle Bathonian floras and phytocenoses of France. Palaeogeography, Palaeoclimatology, Palaeoecology 143: 135–158.Google Scholar
  94. Plaziat, J.-C. 1970a. Contribution à l'étude de la faune et de la flore du Sparnacien des Corbières septentrionales. Cahiers de Paléontologie. C.N.R.S. 121 pp.Google Scholar
  95. Plaziat, J.-C. 1970b. Huîtres de mangrove et peuplements littoraux de l'Eocène inférieur des Corbières. Geobios 3: 7–27.Google Scholar
  96. Plaziat, J.-C. 1984. Stratigraphie et évolution paléogéographique du domaine pyrénéen de la fin du Crétacé (phase maastrichtienne) à la fin de l'Eocène (phase pyrénéenne). Thesis es-sciences, Université Paris-Sud, Orsay, 1351 pp. (unpublished).Google Scholar
  97. Plaziat, J.-C. 1986. Influence respective des événements locaux (sédimentologiques, tectoniques) et globaux (climatiques, variation du niveau des océans) sur la répartition et l'évolution des peuplements pyrénérens du début du Tertiaire. Bulletin des Centres de Recherches, Exploration–Production d'Elf-Aquitaine 10: 467–476.Google Scholar
  98. Plaziat, J.-C. 1995. Modern and fossil mangroves and mangals: their climatic and biogeographic variability. In: Bosence D.W.J. and Allison, P.A. (eds.), Marine Palaeoenvironmental Analysis from Fossils. Geological Society, London, special publication 83: 73–96.Google Scholar
  99. Plaziat, J.-C. and Cavagnetto, C. 1996. Taphonomic and biogeographic processes controlling the mangrove trees and mollusc associations of the Pyrenean Paleocene and Eocene. In: Melendez, G., Blasco, M.P.and Perez, I. (eds), II Reunion de tafonomia y fosilizacion. pp. 331–336.Google Scholar
  100. Institucion 'Fernando el Catolico', Zaragoza. Plaziat, J.-C. and Koeniguer, J.-C. 1983. Histoire géologique de la mangrove: critères de paléomangroves, ancienneté de ce biome et modalités de sa diffusion. Livre jubilaire G. Lucas. Géologie Sédimentaire, Mémoires géologiques de l'université de Dijon 7: 235–247.Google Scholar
  101. Plaziat, J.C. and Perrin, C. 1992. Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs. Palaeogeography, Palaeoclimatology, Palaeoecology 96: 195–231.Google Scholar
  102. Pole, M.S. and Macphail, M.K. 1996. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palynol. 92: 55–67.Google Scholar
  103. Prothero, D.R. and Heaton, T.H. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeography, Palaeoclimatology, Palaeoecology 127: 257–283.Google Scholar
  104. Ramanujan, C.G.K. 1956. On the occurrence of fossil wood of Sonneratia: Sonneratioxylon daksbinense n. sp. from the Tertiary of South Arcot district. Madras. The Palaeobotanist 5: 78–81.Google Scholar
  105. Raup, D.M. 1996. Extinction models. In: Jablonski, D., Erwin, D.H. and Lipps, J.H. (eds.), Evolutionary Paleobiology. pp. 419–433. University of Chicago Press.Google Scholar
  106. Raymond, A. and Phillips, T.L. 1983. Evidence for an Upper Carboniferous mangrove community. In: Teas, H.J. (ed.), Tasks for Vegetation Science, 8, Biology and ecology of mangroves, Dr. W. Junk publ., pp. 19–30.Google Scholar
  107. Reid, D.G. 1985. Habitat and zonation patterns of Littoraria species (Gastropoda: Littorinidae) in Indo-Pacific mangrove forests. Biol. J. Linnean Soc. 26: 39–68.Google Scholar
  108. Reid, D.G. 1986. The Littorinid mollusks of mangrove forests in the Indo-Pacific region. The genus Littoraria. British Museum (Nat. Hist), London, 228 pp.Google Scholar
  109. Retallack, G. 1975. The life and times of a Triassic Lycopod. Alcheringa 1: 3–29.Google Scholar
  110. Retallack, G.J. 1977. Reconstructing Triassic vegetation of eastern Australasia: a new approach for the biostratigraphy of Gondwanaland. Alcheringa 1: 247–277.Google Scholar
  111. Retallack, G. and Dilcher, D.L. 1981. A coastal hypothesis for the dispersal and rise to dominance of flowering plants. In: Niklas, K.J. (ed.), Paleobotany, Paleoecology and Evolution. Praeger, K.J.N.publ. 2: 27–67.Google Scholar
  112. Reymanowna, M. and Watson, J. 1976. The genus Frenelopsis Schenk and the type species Frenelopsis hoheneggeri (Ettingshausen) Schenk. Acta Palaeobot. 17: 17–26.Google Scholar
  113. Rico-Gray, V. 1993. Origen y rutas de dispersión de los mangles: una revisión con enfasis en las especies de America. Acta Bot. Mex. 25: 1–13.Google Scholar
  114. Robert, C. and Chamley, H., 1992. Late Eocene-Early Oligocene evolution of climate and marine circulation: deep sea clay mineral evidence. Ant. Res. Ser. 56: 97–117.Google Scholar
  115. Roche, E. 1980. Effets d'une phase climatique tropicale au Panisélien dans le bassin sédimentaire belge. Colloque Palynologie et Climats, Mémoires du Museum National d'Histoire Naturelle, Paris, n.s. 27: 239–246.Google Scholar
  116. Rull, V. 1997. Sequence analysis of western Venezuelan Cretaceous to Eocene sediments using palynology: chronopaleoenvironmental and paleovegetational approaches. Palynology 21: 79–90.Google Scholar
  117. Rull, V. 1998. Evolución de los manglares neotropicales: la crisis del Eoceno. Interciencia 23: 355–362.Google Scholar
  118. Saenger, P. 1998. Mangrove vegetation: an evolutionary perspective. Aust. J. Mar. Freshw. Res. 49: 277–286.Google Scholar
  119. Scott, A.C. 1979. The ecology of Coal Measure floras from northern Britain. Proc. Geol. Assoc. 90: 97–116.Google Scholar
  120. Sein, M.K. 1961. Nothophagus pollens in the London Clay. Nature 190: 1030–1031.Google Scholar
  121. Sheehan, P.M. 1996. A new look at Ecologic Evolutionary Units (EEUs). Palaeogeography, Palaeoclimatology, Palaeoecology 127: 21–32.Google Scholar
  122. Sloan, L.C. and Barron, E.J. 1992. A comparison of Eocene climate model results to quantified paleoclimatic interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 183–202.Google Scholar
  123. Sloan, L.C. and Rea, D.K. 1995. Atmosphere carbon dioxide and early Eocene climate: a general circulation modeling sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 119: 275–292.Google Scholar
  124. Stafford-Deitsch, J. 1996. Mangrove, the Forgotten Habitat. Immel publ., London, 277 pp.Google Scholar
  125. Stott, L.D. 1992. Higher temperatures and lower p CO2: a climate enigma at the end of the Paleocene epoch. Paleoceanography 7: 395–404.Google Scholar
  126. Stott, L.D., Kennet, J.P., Shackleton, N.J. and Corfield, R.M. 1990. The evolution of Antarctic. Surface waters during the Paleogene: inferences from stable isotopic composition of planktonic foraminifers. O.D.P. Leg 113, Proc. Oc. Drill. Progr. Sci. results, 113: 843–863.Google Scholar
  127. Stover, L.E. and Evans, P.R., 1973. Upper Cretaceous-Eocene spore-pollen zonation, offshore Gippsland Basin, Australia. Sp. Publ. Geol. Soc. Aust. 4: 55–72.Google Scholar
  128. Suc, J.-P. and Bessais, E. 1990. Pérennité d'un climat thermoxérique en Sicile avant, pendant et après la crise messinienne. Comptes Rendus des Séances de l'Académie des Sciences, Paris 310: 1701–1707.Google Scholar
  129. Thanikaimoni, G. 1987. Mangrove palynology. Institut Français de Pondichéry, travaux de la section Sciences et Techniques, XXIV, 100 pp.Google Scholar
  130. Tiffney, B.H. 1999. Fossil fruitsand seed flora from the Early Eocene Fisher/Sullivan site. In: Weems, R.E. and Grimsley, G.J. (eds.), Early Eocene Vertebrates and Plants from the Fisher/Sullivan site (Nanajemoy Formation). pp. 139–159.Google Scholar
  131. Stafford County, Virginia. Virginia Division of Mineral Resources, Charlottesville. Tomlinson, P.B. 1986. The botany of mangroves. Cambridge Univ. Press, 413 pp.Google Scholar
  132. Tralau, H. 1964. The genus Nypa Van Wurmb. Kungliga Svenska Vetenskapsakademiens handlingar. Fjärde serien 10: 5–29.Google Scholar
  133. Tsuda, K., Itoigawa, J. and Yamanoi, T. 1986. Mangrove swamp fauna and flora in the Middle Miocene of Japan. Palaeontol. Soc. Japan, Sp. Pap. 29: 129–134.Google Scholar
  134. Upchurch, G.R. and Doyle J.A. 1981. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In: Roman, R.C. (ed.), Geobotany II. pp. 167–196. Plenum publishing Corporation, N.Y.Google Scholar
  135. van Steenis, C.G.G.J. 1962. The distribution of mangrove plant genera and its significance for palaeogeography. Proc. Kon. Ned. Akad. Wetensch. (C) 65: 164–169.Google Scholar
  136. Vasseur, G. 1881. Recherches géologiques sur les terrains tertiaires de la France occidentale. Masson, Paris, 432 pp.Google Scholar
  137. Vasseur, G. and Cossman, M. 1880–1917. Eocène de Bretagne. Faune de Bois-Gouët. Atlas Paléontologique. Hermann, Paris, 19 pp.Google Scholar
  138. Wilkinson, H.P. 1981. The anatomy of the hypocotyls of Ceriops Arnott (Rhizophoraceae), recent and fossil. Bot. J. Linnean Soc. 82: 139–164.Google Scholar
  139. Wilkinson, H.P. 1983. Starch grain casts and moulds in Eocene (Tertiary) fossil mangrove hypocotyls. Ann. Bot. 51: 39–45.Google Scholar
  140. Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer. Scientist 66: 694–703.Google Scholar
  141. Wolfe, J.A. 1980. Tertiary climates and floristic relationships at high latitudes in the Northern hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology 30: 313–323.Google Scholar
  142. Yamanoi, T. 1984. Presence of Sonneratiaceous pollen in Middle Miocene sediments, Central Japan. Rev. Palaeobot. Palynol. 40: 347–357.Google Scholar
  143. Yamanoi, T. and Tsuda, K. 1986. On the conditions of paleomangrove forest in the Kurosedani Formation (Middle Miocene), Central Japan. Mem. Nat. Sci. Mus. 19: 55–66.Google Scholar
  144. Yamanoi, T., Tsuda, K., Itoigawa, J., Okamoto, K. and Taguchi, E. 1980. On the mangrove community discovered from the Middle Miocene formations in southwest Japan. J. Geol. Soc. Japan 86: 635–638.Google Scholar
  145. Yonge, C.M. 1957. Enigmonia aenigmatica, Sowerby, a motile anomiid (saddle oyster). Nature 180: 765–766.Google Scholar
  146. Zaklinskaja, E.D. 1978. Palynology of Paleogene clay from DSDP site 368, Cape Verde rise. In: Lancelot, Y., Siebold, E. et al. Supplement to Initial Report of the Deep Sea Drilling Project XLI. pp. 933–937. Government Printing Office, Washington.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jean-Claude Plaziat
    • 1
  • Carla Cavagnetto
    • 2
  • Jean-Claude Koeniguer
    • 3
  • Frédéric Baltzer
    • 1
  1. 1.Lab. d'Hydrologie et Géochimie IsotopiqueParis-Sud UniversityOrsay cedexFrance
  2. 2.Lab. de Paléoenvironnements et PalynologieMontpellier UniversityMontpellier cedex 05France
  3. 3.Lab. de Paléobotanique et PaléoécologieParis VI UniversityParisFrance

Personalised recommendations