Advertisement

Computational Mechanics of the Heart

  • M. P. Nash
  • P. J. Hunter
Article

Abstract

Finite elasticity theory combined with finite element analysis provides the framework for analysing ventricular mechanics during the filling phase of the cardiac cycle, when cardiac cells are not actively contracting. The orthotropic properties of the passive tissue are described here by a “pole–zero” constitutive law, whose parameters are derived in part from a model of the underlying distributions of collagen fibres. These distributions are based on our observations of the fibrous-sheet laminar architecture of myocardial tissue. We illustrate the use of high order (cubic Hermite) basis functions in solving the Galerkin finite element stress equilibrium equations based on this orthotropic constitutive law and for incorporating the observed regional distributions of fibre and sheet orientations. Pressure–volume relations and 3D principal strains predicted by the model are compared with experimental observations. A model of active tissue properties, based on isolated muscle experiments, is also introduced in order to predict transmural distributions of 3D principal strains at the end of the contraction phase of the cardiac cycle. We end by offering a critique of the current model of ventricular mechanics and propose new challenges for future modellers.

finite elastic deformation cardiac mechanics orthotropic constitutive relations fibrous-sheet tissue structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Atkin and N. Fox, An Introduction to the Theory of Elasticity. Longman, London (1980).zbMATHGoogle Scholar
  2. 2.
    J.B. Caulfield and T.K. Borg, The collagen network of the heart. Lab. Invest. 40(3) (1979) 364–372.Google Scholar
  3. 3.
    K.D. Costa, P.J. Hunter, J.M. Rogers, J.M. Guccione, L.K. Waldman and A.D. McCulloch, A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part I-Cylindrical and spherical polar coordinates. ASME J. Biomech. Engrg. 118(4) (1996) 452–463.Google Scholar
  4. 4.
    K.D. Costa, P.J. Hunter, J.M. Rogers, J.M. Guccione, L.K. Waldman and A.D. McCulloch, A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part II-Prolate spherical coordinates. ASME J. Biomech. Engrg. 118(4) (1996) 464–472.Google Scholar
  5. 5.
    K.D. Costa, K. May-Newman, D. Farr, W.G. O'Dell, A.D. McCulloch and J.H. Omens, Three-dimensional residual strain in midanterior canine left ventricle. Amer. J. Physiol. 273 (1997) H1968-H1976.Google Scholar
  6. 6.
    L.L. Demer and F.C.P. Yin, Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. London 339 (1983) 615–630.Google Scholar
  7. 7.
    S. Dokos, B.H. Smaill, A.A. Young and I.J. Le Grice, Anisotropic shear properties of passive ventricular myocardium. Amer. J. Physiol. (2001) (submitted).Google Scholar
  8. 8.
    S. Dokos, A.A. Young, B.H. Smaill and I.J. Le Grice, A triaxial-measurement shear-test device for soft biological tissues. ASME J. Biomech. Engrg. (2001) (in press).Google Scholar
  9. 9.
    P. Gould, D. Ghista, L. Brombolich and I. Mirsky, In vivo stresses in the human left ventricular wall: Analysis accounting for the irregular 3-dimensional geometry and comparison with idealised geometry analyses. J. Biomech. 5 (1972) 521–539.CrossRefGoogle Scholar
  10. 10.
    J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. ASME J. Biomech. Engrg. 112 (1990) 340–346.Google Scholar
  11. 11.
    P.J. Hunter, A.D. McCulloch and H.E.D.J. ter Keurs, Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Molec. Biol. 69 (1998) 289–331.CrossRefGoogle Scholar
  12. 12.
    P.J. Hunter, M.P. Nash and G.B. Sands, Computational electromechanics of the heart. In: A.V. Panfilov and A.V. Holden (eds), Computational Biology of the Heart. Wiley, West Sussex, England (1997) Chapter 12, pp. 345–407.Google Scholar
  13. 13.
    J.M. Huyghe, T. Arts, D.H. van Campen and R.S. Reneman, Porous medium finite element model of the beating left ventricle. Amer. J. Physiol. 262 (Heart Circ. Physiol. 31) (1992) H1256-H1267.Google Scholar
  14. 14.
    J.M. Huyghe, D.H. van Campen, T. Arts and R.M. Heethaar, A two-phase finite element model of the diastolic left ventricle. J. Biomech. 24(7) (1991) 527–538.CrossRefGoogle Scholar
  15. 15.
    R.F. Janz and A.F. Grimm, Finite-element model for the mechanical behaviour of the left ventricle: Prediction of deformation in the potassium-arrested rat heart. Circ. Res. 30 (1972) 244–252.Google Scholar
  16. 16.
    R.F. Janz and A.F. Grimm, Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13 (1973) 689–704.Google Scholar
  17. 17.
    A.M. Katz, Physiology of the Heart, 2nd ed. Raven Press, New York (1992).Google Scholar
  18. 18.
    P. Kohl, P. Hunter and D. Noble, Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Prog. Biophys. Molec. Biol. 71(1) (1999) 91–138.CrossRefGoogle Scholar
  19. 19.
    I.J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin and P.J. Hunter, Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Amer. J. Physiol. 269(38) (1995) H571-H582.Google Scholar
  20. 20.
    I.J. Le Grice, Y. Takayama and J.W. Covell, Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77 (1995) 182–193.Google Scholar
  21. 21.
    D.A. MacKenna, J.H. Omens and J.W. Covell, Left ventricular perimysial collagen fibers uncoil rather than stretch during diastolic filling. Basic Res. Cardiol. 91(2) (1996) 111–122.CrossRefGoogle Scholar
  22. 22.
    D.A. MacKenna, J.H. Omens, A.D. McCulloch and J.W. Covell, Contributions of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Amer. J. Physiol. 266 (1994) H1007-H1018.Google Scholar
  23. 23.
    L.E. Malvern, Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ (1969).Google Scholar
  24. 24.
    A.D. McCulloch, Cardiac biomechanics. In: J.D. Bronzino (ed.), The Biomedical Engineering Handbook. CRC Press, Boca Raton, FL (1995) Chapter 31, pp. 418–439.Google Scholar
  25. 25.
    A.D. McCulloch and J.H. Omens, Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech. 24(7) (1991) 539–548.CrossRefGoogle Scholar
  26. 26.
    I. Mirsky, Ventricular and arterial wall stresses based on large deformation analyses. Biophys. J. 13(11) (1973) 1141–1159.MathSciNetCrossRefGoogle Scholar
  27. 27.
    M.P. Nash, Mechanics and material properties of the heart using an anatomically accurate mathematical model. PhD Thesis, The University of Auckland, New Zealand (1998).Google Scholar
  28. 28.
    P.M.F. Nielsen, I.J. Le Grice, B.H. Smaill and P.J. Hunter, Mathematical model of geometry and fibrous structure of the heart. Amer. J. Physiol. 260 (Heart Circ. Physiol. 29) (1991) H1365-H1378.Google Scholar
  29. 29.
    J.T. Oden, Finite Elements of Nonlinear Continua. McGraw-Hill, New York (1972).zbMATHGoogle Scholar
  30. 30.
    J.H. Omens, K.D. May and A.D. McCulloch, Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261 (Heart Circ. Physiol. 30) (1991) H918-H928.Google Scholar
  31. 31.
    T.F. Robinson, M.A. Geraci, E.H. Sonnenblick and S.M. Factor, Coiled perimysial fibers of papillary muscle in rat heart: Morphology, distribution and changes in configuration. Circ. Res. 63 (1988) 577–592.Google Scholar
  32. 32.
    E.K. Rodriguez, A. Hoger and A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4) (1994) 455–467.CrossRefGoogle Scholar
  33. 33.
    B.H. Smaill and P.J. Hunter, Structure and function of the diastolic heart: Material properties of passive myocardium. In: L. Glass, P.J. Hunter and A.D. McCulloch (eds), Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. Springer, New York (1991) pp. 1–29.Google Scholar
  34. 34.
    D.D. Streeter, Jr., H.M. Spotnitz, D.P. Patel, J. Ross, Jr. and E.H. Sonnenblick, Fibre orientation in the canine left ventricle during diastole and systole. Circ. Res. 24 (1969) 339–347.Google Scholar
  35. 35.
    Y. Takayama, I.J. Le Grice, J.W. Holmes and J.W. Covell, Effects of chordal uncoupling on deformation in the papillary muscle. FASEB J. 8(5) (1994) A591.Google Scholar
  36. 36.
    J.V. Tyberg and E.R. Smith, Ventricular diastole and the role of the pericardium. Herz 15(6) (1990) 354–361.Google Scholar
  37. 37.
    G.S. Tyson, Jr., G.W. Maier, C.O. Olsen, J.W. Davis and J.S. Rankin, Pericardial influences on ventricular filling in the conscious dog: An analysis based on pericardial pressure. Circ. Res. 54 (1984) 173–184.Google Scholar
  38. 38.
    T.P. Usyk, R. Mazhari and A.D. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143–164.zbMATHCrossRefGoogle Scholar
  39. 39.
    F.J. Villarreal, W.Y.W. Lew, L.K. Waldman and J.W. Covell, Transmural myocardial deformation in the ischemic canine left ventricle. Circ. Res. 68(2) (1991) 368–381.Google Scholar
  40. 40.
    W.M. Vogel, C.S. Apstein, L.L. Briggs, W.H. Gaasch and J. Ahn, Acute alterations in left ventricular diastolic chamber stiffness: Role of the erectile effect of coronary arterial pressure and flow in normal and damaged hearts. Circ. Res. 51(4) (1982) 465–478.Google Scholar
  41. 41.
    L.K. Waldman, Y.C. Fung and J.W. Covell, Transmural myocardial deformation in the canine left ventricle: Normal in vivo three-dimensional finite strains. Circ. Res. 57(1) (1985) 152–163.Google Scholar
  42. 42.
    L.K. Waldman, D. Nossan, F. Villareal and J.W. Covell, Relation between transmural deformation and local myofiber direction in the canine left ventricle. Circ. Res. 63 (1988) 550–562.Google Scholar
  43. 43.
    R.H. Woods, A few applications of a physical theorem to membranes in the human body in a state of tension. J. Anat. Physiol. 26 (1892) 362–370.Google Scholar
  44. 44.
    M. Yang and L.A. Taber, The possible role of poroelasticity in the apparent viscoelastic behaviour of passive cardiac muscle. J. Biomech. 24(7) (1991) 587–597.CrossRefGoogle Scholar
  45. 45.
    F.C.P. Yin, Ventricular wall stress. Circ. Res. 49(4) (1981) 829–842.Google Scholar
  46. 46.
    F.C.P. Yin, R.K. Strumpf, P.H. Chew and S.L. Zeger, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577–589.CrossRefGoogle Scholar
  47. 47.
    A.A. Young, I.J. Le Grice, M.A. Young and B.H. Smaill, Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192(2) (1998) 139–150.CrossRefGoogle Scholar
  48. 48.
    O.C. Zienkiewicz and R.L. Taylor, The Finite ElementMethod. I. Basic Formulation and Linear Problems, 4th ed. McGraw-Hill, Berkshire, UK (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. P. Nash
    • 1
  • P. J. Hunter
    • 2
  1. 1.University Laboratory of PhysiologyUniversity of OxfordOxfordU.K.
  2. 2.Department of Engineering ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations