Pharmaceutical Research

, Volume 18, Issue 6, pp 829–837 | Cite as

Gastrointestinal Transit and Mucoadhesion of Colloidal Suspensions of Lycopersicon Esculentum L. and Lotus Tetragonolobus Lectin-PLA Microsphere Conjugates in Rats

  • Marie-Jeanne Montisci
  • Assia Dembri
  • Gaetana Giovannuci
  • Hélène Chacun
  • Dominique Duchêne
  • Gilles Ponchel
Article

Abstract

Purpose. To investigate in vivo the fate and the behavior of lectin-particle conjugates after oral administration.

Methods. Two plant lectins were selected, namely Lycopersicon esculentum L. and Lotus tetragonolobus lectins, which have been reported to be specific for oligomers of N-acetyl-D-glucosamine and L-fucose, respectively, and conjugated to small poly(lactide) microspheres. Their intestinal transit was investigated in detail using radiolabeled particles. The transport and the distribution of the particles along the intestine, as well as their interactions with the intestinal mucosa, were determined after oral administration in rat.

Results. The overall transit of the particles was shown to be strongly delayed when the microspheres were conjugated to the lectins, mainly due to the gastric retention of the particles. A significant fraction of the conjugates adhered to the gastric and intestinal mucosae. No significant differences were observed after a preliminary incubation of lectin-microsphere conjugates with specific sugars.

Conclusion. Although specific interactions could not be excluded, especially in the stomach, it was likely that adhesion was predominantly due to nonspecific interactions. These results could be attributed both to unfavorable physicochemical characteristics of the conjugates and to premature adsorption of soluble mucin glycoproteins, preventing any further specific adhesion.

oral route mucoadhesion gastrointestinal transit lectin-microsphere conjugates Lycopersicon esculentum L. Lotus tetragonolobus lectin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Rougé, P. Buri, and E. Doelker. Drug absorption site in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 136:117-139 (1996).Google Scholar
  2. 2.
    C. Durrer, J. M. Irache, D. Duchêne, and G. Ponchel. Mucin interaction with functionalized poly(styrene) latexes. J. Colloid Interf. Sci. 170:555-561 (1994).Google Scholar
  3. 3.
    C. Durrer, J. M. Irache, F. Puisieux, D. Duchêne, and G. Ponchel. Mucoadhesion of latexes. II. Adsorption isotherms and desorption studies. Pharm. Res. 11:680-683 (1994).Google Scholar
  4. 4.
    C. Damgé, C. Michel, M. Aprahamian, P. Couvreur, and J. P. Devissaguet. Nanocapsules as carriers for oral peptide delivery. J. Control. Release 13:233-239 (1990).Google Scholar
  5. 5.
    B. Hubert, J. Atkinson, M. Guerret, M. Hoffman, J. P. Devissaguet, and P. Maincent. The preparation and acute antihypertensive effects of a nanocapsular form of darodipine, a dihydropyridine calcium entry blocker. Pharm. Res. 8:734-738 (1991).Google Scholar
  6. 6.
    N. Ammoury, H. Fessi, J. P. Devissaguet, M. Dubrasquet, and S. Benita. Jejunal absorption, pharmacological activity, and pharmacokinetic evaluation of indomethacin-loaded poly(D,L-lactide) and poly(isobutyl-cyanoacrylate) nanocapsules in rats. Pharm. Res. 8:101-105 (1991).Google Scholar
  7. 7.
    P. H. Beck, J. Kreuter, W. E. G. Müller, and W. Schatton. Improved peroral delivery of avarol with polyalkylcyanoacrylate nanoparticles. Eur. J. Pharm. Biopharm. 40:134-137 (1994).Google Scholar
  8. 8.
    G. Ponchel and J. M. Irache. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliv. Rev. 34:191-219 (1998).Google Scholar
  9. 9.
    G. J. Russell-Jones. Oral drug delivery via the vitamin B12 uptake system. Pharm. Manuf. Int. 81-82 (1994).Google Scholar
  10. 10.
    B. Naisbett and J. Woodley. Binding of tomato lectin to the intestinal mucosa and its potential for oral drug delivery. Biochem. Soc. Trans. 18:879-880 (1990).Google Scholar
  11. 11.
    J. M. Irache, C. Durrer, D. Duchêne, and G. Ponchel. Preparation and characterization of lectin-latex conjugates for specific bioadhesion. Biomaterials 15:899-904 (1994).Google Scholar
  12. 12.
    I. Ezpeleta, J. M. Irache, S. Stainmesse, C. Chabenat, J. Gueguen, and A. M. Orecchioni. Preparation of lectin-vicilin nanoparticle conjugates using the carbodiimide coupling technique. Int. J. Pharm. 142:227-233 (1996).Google Scholar
  13. 13.
    N. Hussain, P. U. Jani, and A. T. Florence. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res. 14:613-618 (1997).Google Scholar
  14. 14.
    N. Hussain and A. T. Florence. Utilizing bacterial mechanisms of epithelial cell entry: Invasin-induced oral uptake of latex nanoparticles. Pharm. Res. 15:153-156 (1998).Google Scholar
  15. 15.
    D. C. Kilpatrick, A. Pusztai, G. Grant, C. Graham, and S. W. B. Ewen. Tomato lectin resists digestion in the mammalian alimentary canal and binds to villi without deleterious effects. FEBS Lett. 185:299-305 (1985).Google Scholar
  16. 16.
    A. M. Araujo, J. M. T. Neves, W. M. Azevedo, G. G. Oliveira, J. D. L. Ferreira, R. A. L. Coelho, E. A. P. Figueiredo, and J. L. B. Carvalho. Polyvinyl alcohol-glutaraldehyde network as a support for protein immobilisation. Biotechnol. Tech. 11:67-70 (1997).Google Scholar
  17. 17.
    C. M. Lehr, F. G. J. Poelma, H. E. Junginger, and J. J. Tukker. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int. J. Pharm. 70:235-240 (1991).Google Scholar
  18. 18.
    M. S. Miller, J. J. Galligan, and T. F. Burks. Accurate measurement of intestinal transit in the rat. J. Pharmacol. Methods 6:211-217 (1981).Google Scholar
  19. 19.
    F. Y. Chang, S. D. Lee, G. H. Yeh, and P. S. Wang. Comparison of two orogastric feeding markers for measuring gastrointestinal motor functions in rats. Pharmacology 49:151-158 (1994).Google Scholar
  20. 20.
    A. T. Florence. The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm. Res. 14:259-266 (1997).Google Scholar
  21. 21.
    G. M. Hodges, E. A. Carr, R. A. Hazzard, and K. E. Carr. Uptake and translocation of microparticles in small intestine. Morphology and quantification of particle distribution. Dig. Dis. Sci. 40:967-975 (1995).Google Scholar
  22. 22.
    C. M. Lehr and A. Pusztai. The potential of bioadhesive lectins for the delivery of peptide and protein drugs to the gastrointestinal tract. In A. Pusztai and S. Bardocz (eds.), Lectins: Biomedical Perspectives, Taylor & Francis, London, 1995 pp. 117-140.Google Scholar
  23. 23.
    C. M. Lehr, J. A. Bouwstra, W. Kok, A. B. J. Noach, A. G. de Boer, and H. E. Junginger. Bioadhesion by means of specific binding of tomato lectin. Pharm. Res. 9:547-553 (1992).Google Scholar
  24. 24.
    J. M. Irache, C. Durrer, D. Duchêne, and G. Ponchel. Bioadhesion of lectin-latex conjugates to rat intestinal mucosa. Pharm. Res. 13:1716-1719 (1996).Google Scholar
  25. 25.
    C. Damgé, M. Aprahamian, H. Marchais, J. P. Benoit, and M. Pinget. Intestinal absorption of PLAGA microspheres in the rat. J. Anat. 189:491-501 (1996).Google Scholar
  26. 26.
    C. Tuleu, C. Andrieux, P. Boy, and J. C. Chaumeil. Gastrointestinal transit of pellets in rats: Effect of size and density. Int. J. Pharm. 180:123-131 (1999).Google Scholar
  27. 27.
    K. H. Yuen, A. A. Deshmukh, J. M. Newton, M. Short, and R. Melchor. Gastrointestinal transit and absorption of theophyline from multiparticulate controlled release formulation. Int. J. Pharm. 97:61-77 (1997).Google Scholar
  28. 28.
    J. M. Irache, C. Durrer, D. Duchêne, and G. Ponchel. In vitro study of lectin-latex conjugates for specific bioadhesion. J. Control. Release 31:181-188 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Marie-Jeanne Montisci
    • 1
  • Assia Dembri
    • 1
  • Gaetana Giovannuci
    • 1
  • Hélène Chacun
    • 1
  • Dominique Duchêne
    • 1
  • Gilles Ponchel
    • 1
  1. 1.Laboratoire de Pharmacotechnie et Biopharmacie, UMR 8612, Faculté de PharmacieUniversité Paris-SudChâtenay-Malabry CedexFrance

Personalised recommendations