Inflammation

, Volume 25, Issue 3, pp 137–144 | Cite as

Hypothermia Attenuates β1 Integrin Expression on Extravasated Neutrophils in an Animal Model of Meningitis

  • Mark E. Rowin
  • Vivian Xue
  • Jose Irazuzta
Article

Abstract

Brain injury in meningitis occurs in part as a consequence of leukocyte migration and activation. Leukocyte integrins are pivotal in the inflammatory response by mediating adhesion to vascular endothelium and extracellular matrix proteins. We have demonstrated that moderate hypothermia early in the course of meningitis decreases leukocyte sequestration within the brain parenchyma. This study examines whether hypothermia alters neutrophil integrin expression in a rabbit model of bacterial meningitis. Prior to the induction of meningitis, peripheral blood samples were obtained and the neutrophils isolated. Sixteen hours after inducing group B streptococcal meningitis, animals were treated with antibiotics, IV fluids, and mechanically ventilated. Animals were randomized to hypothermia (32–33°C) or normothermia conditions. After 10 hours of hypothermia or normothermia, neutrophils were isolated from the blood and cerebral spinal fluid (CSF), stained for β1 and β2 integrins, and analyzed using flow cytometry. Cerebral spinal fluid neutrophil β1 integrin expression was significantly decreased in hypothermic animals. Beta-1 integrins can assume a higher affinity or "activated" state following inflammatory stimulation. Expression of "activated" β1 integrins was also significantly decreased in hypothermic animals. Beta2 CSF neutrophil integrin expression was decreased in hypothermic animals, but failed to reach significance. These data suggest hypothermia may attenuate extravasated leukocyte expression of both total and "activated" β1 integrins.

integrin hypothermia meningitis neutrophils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansbrough, J. F., T. Wikstrom, M. Braide, M. Tenehaus, O. H. Rennekampee, V. Kiessig, and L. M. Bjursten. 1996. Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J. Surg. Res. 61:17–22.Google Scholar
  2. 2.
    Matthay, M. A., H. G. Folkesson, A. Campagna, and F. Kheradmand. 1993. Alveolar epithelial barrier and acute lung injury. NewHorizons 1:613–622.Google Scholar
  3. 3.
    Miota, J. M., T. J. Williams, P. G. Hellewell, and P. K. Jeffery. 1996. A role for the beta 2 integrin CD11b in mediating experimental lung injury in mice. Am. J. Respir. Cell Mol. Biol. 14:363–373.Google Scholar
  4. 4.
    Jaeschke, H., A. Farhood, and C. W. Smith. 1990. Neutrophils contribute to ischemia-reperfusion injury in rat liver in vivo. FASEB J. 4:3355–3359.Google Scholar
  5. 5.
    Granert, C., J. Raud, X. Xie, L. Lindquist, and L. Lindbom. 1994. Inhibition of leukocyte rolling with polysaccharide fucoidin prevents pleocytosis in experimental meningitis in the rabbit. J. Clin. Invest. 93:929–936.Google Scholar
  6. 6.
    Kornelisse, R. F., R. De Groot, and H. J. Neijens. 1995. Bacterial meningitis: mechanisms of disease and therapy. Eur. J. Pediatr. 154:85–96.Google Scholar
  7. 7.
    Hansen, P. R., and G. Stawski. 1994. Neutrophil mediated damage to isolated myocytes after anoxia and reoxygenation. Cardiovasc. Res. 28:565–569.Google Scholar
  8. 8.
    Leib, S., Y. Kim, L. Chow, R. Sheldon, and M. Tauber. 1996. Reactive oxygen intermediates contribute to necrotic and apototic Hypothermia Attenuates Integrin Expression 143 neuronal injury in an infant rat model of bacterial meningitis due to Group B Streptococcus. J. Clin. Invest. 98:2632–2639.Google Scholar
  9. 9.
    Tuomanen, E., and A. Baruch. 1989. New antibodies as adjunctive therapies for gram positive bacterial meningitis. Pediatr. Infect. Dis. J. 8:923–928.Google Scholar
  10. 10.
    Vedder, N., R. Winn, C. Rice, Y. Chi, K. Arfors, and J. Harlan. 1988. A monoclonal antibody to the adherence-promoting leukocyte glycoprotein CD-13 reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J. Clin. Invest. 81:939–944.Google Scholar
  11. 11.
    Saez-Llorens, X., H. S. Jafari, F. Severien, K. D. Olsen, E. J. Hansen, I. I. Singer, and G. H. McCracken. 1991. Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental Haemophilus meningitis. J. Clin. Invest. 88:2003–2011.Google Scholar
  12. 12.
    Arnaout, M. A. 1990. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 75:1037–1050.Google Scholar
  13. 13.
    Bohnsack, J. F., and X. Zhou. 1992. Divalent cation substitution reveals CD18-and very late antigen-dependent pathways that mediate human PMN adherence to fibronectin. J. Immunol. 149:1340–1347.Google Scholar
  14. 14.
    Bohnsack, J. F., S. K. Akiyama, C. H. Damsky, W. A. Knape, and G. A. Zimmerman. 1990. Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin. J. Exp. Med. 171:1221–1237.Google Scholar
  15. 15.
    Reinhardt, P. H., J. F. Elliot, and P. Kubes. 1997. Neutrophils can adhere via a4b1-Integrin under flow conditions. Blood 89:3837–3846.Google Scholar
  16. 16.
    Kubes, P., X. Niu, C. W. Smith, M. Kehrli, Jr., P. Reinhardt, and R. Woodman. 1995. A novel beta 1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J. 9:1103–1111.Google Scholar
  17. 17.
    Gao, J. X., and A. C. Issekutz. 1995. Polymorphonuclear leukocyte migration through human dermal fibroblast monolayers is dependent on both beta-2 integrin (CD11/CD18) and beta-1 integrin (CD29) mechanisms. Immunology 85:485–492.Google Scholar
  18. 18.
    Gao, J. X., and Issekutz, A. C. 1997. The b1 integrin, very late activation antigen-4 on human neutrophils can contribute to neutrophil migration through connective tissue fibroblast barriers. Immunology 90:448–454.Google Scholar
  19. 19.
    Attibele, N., P. Wyde, J. Trial, S. Smole, C. Smith, and R. Rossen. 1993. Measles virus-induced changes in leukocyte function antigen 1 expression and leukocyte aggregation: possible role in measles virus pathogenesis. J. Virol. 67:1075–1079.Google Scholar
  20. 20.
    Bergelson, J., B. Chan, R. Finberg, and M. Hemler. 1993. The integrin VLA-2 binds echovirus 1 and extracellular matrix ligands by different mechanisms. J. Clin. Invest. 92:232–239.Google Scholar
  21. 21.
    Rao, S., K. Ogata, and A. Catanzaro. 1993. Mycobacterium avium-M. intracellulare binds to the integrin receptor alpha V beta 3 on human monocytes and monocyte-derived macrophages. Infect. Immun. 61:663–670.Google Scholar
  22. 22.
    Christensen, J., E. Andersson, A. Scheynius, O. Marker, and A. Thomsen. 1995. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection. J. Immunol. 154:5293–5301.Google Scholar
  23. 23.
    Weeks, B., M. Klotman, S. Dhawan, M. Kibbey, J. Rappasport, and H. Kleinman. 1991. HIV-1 infection of human T lymphocytes results in enhanced alpha 5 beta 1 integrin expression. J. Cell Biol. 114:847–853.Google Scholar
  24. 24.
    Leblond, V., C. Legendre, G. Gras, N. Dereuddre-Bosquet, C. Lafuma, and D. Dormont. 2000. Quantitative study of beta-1 integrin expression and fibronectin interaction profile of T lymphocytes in vitro infected with HIV. AIDS Res. Hum. Retroviruses. 16:423–433.Google Scholar
  25. 25.
    Whalen, M. J., T. M. Carlos, R. S. Clark, D. W. Marion, M. S. Dekosky, S. Heineman, J. K. Schiding, F. Memarzadeh, C. E. Dixon, and P. M. Kochanek. 1997. The relationship between brain temperature and neutrophil accumulation after traumatic injury in rats. Acta. Neurochir. Suppl. 70:260–261.Google Scholar
  26. 26.
    Whalen, M. J., T. M. Carlos, R. S. Clark, D. W. Marion, S. T. Dekosky, S. Heineman, J. K. Schiding, F. Memarzadeh, and P. M. Kochanek. 1997. The effect of brain temperature on acute inflammation after traumatic brain injury in rats. J. Neurotrauma 14:561–572.Google Scholar
  27. 27.
    Chatzipanteli, K., O. Alonso, S. Kraydieh, and W. Dietrich. 2000. Importance of posttraumatic hypothermia and hyperthemia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J. Cereb. Blood Flow Metab. 20:531–542.Google Scholar
  28. 28.
    Chatzipanteli, K., Y. Yanagawa, A. Marcillo, S. Kraydieh, R. Yezierski, and W. Dietrich. 2000. Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J. Neurotrauma. 17:321–332.Google Scholar
  29. 29.
    Irazuzta, J., R. Pretzlaff, M. Rowin, K. Milam, and B. Zingarelli. 2000. Hypothermia in the treatment of severe bacterial meningitis. Brain Res. (in press).Google Scholar
  30. 30.
    Irazuzta, J., J. Olson, M. Kiefaber, and H. Wong. 1999. Hypothermia decreases excitatory neurotransmitter release in bacterial meningitis in rabbits. Brain Res. 847:143–148.Google Scholar
  31. 31.
    Rowin, M., V. Xue, and J. Irazuzta. 2000. Integrin expression on neutrophils in a rabbit model of group B streptococcal meningitis. Inflammation 24:157–174.Google Scholar
  32. 32.
    Yednock, T., C. Cannon, C. Vandevert, E. Goldbach, G. Shaw, D. Ellis, C. Liaw, L. Fritz, and L. Tanner. 1995. Alpha 4 beta 1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J. Bio. Chem. 270:28740–28750.Google Scholar
  33. 33.
    Albelda, S. M., and C. A. Buck. 1990. Integrins and other cell adhesion molecules. FASEB J. 4:2868–2880.Google Scholar
  34. 34.
    Marcantonio, E. E., and R. Hynes. 1988. Antibodies to conserve cytoplasmic domain of the integrin beta-1 subunit react with proteins in vertebrates, invertebrates, and fungi. J. Cell Biol. 106:1765–1772.Google Scholar
  35. 35.
    Brower, D. L., S. M. Brower, D. C. Hayward, and E. E. Ball. 1997. Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc. Natl. Acad. Sci. U.S.A. 94:9182–9187.Google Scholar
  36. 36.
    Yenari, M. A., D. Kunis, G. H. Sun, D. Onley, L. Watson, S. Turner, S. Whitaker, and G. K. Steinberg. 1998. Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp. Neurol. 153:223–233.Google Scholar
  37. 37.
    Bavbek, M., R. Polin, A. L. Kwan, A. S. Arthur, N. F. Kassell, and K. S. Lee. 1998. Monoclonal antibody against ICAM-1 and CD-18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 29:1930–1936.Google Scholar
  38. 38.
    Rogers, C., E. R. Edelman, and D. I. Simon. 1998. A MAb to the beta 2-leukocyte integrin Mac-1 reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc. Natl. Acad. Sci. U.S.A. 95:10134–10139.Google Scholar
  39. 39.
    Enomoto-Iwamoto, M., M. Iwamoto, K. Nakashima, Y. Mukudai, D. Boettiger, M. Pacifici, K. Kurisu, and F. Suzuki. 1997. Involvement of alpha5 beta1 integrin in matrix interactions and proliferation of chondrocytes. J. Bone Miner. Res. 12:1124–1132.Google Scholar
  40. 40.
    Espinosa, G., A. Lopez-Farre, M. R. Cernadas, F. Manzarbeitia, D. Tan, E. Digiuni, J. R. Mosquera, M. Monton, L. Hernando, S. Casado, and C. Caramelo. 1996. Role of endothelin in the pathophysiology of renal ischemia-reperfusion in normal rabbits. Kidney Int. 50:776–782.Google Scholar
  41. 41.
    Rowin, M., R. Pretzlaff, V. Xue, and J. Irazuzta. 1999. Role of beta 1 integrins on CSF neutrophils in a rabbit model of meningitis. Crit. Care Med. 27:129.Google Scholar
  42. 42.
    Rowin, M., V. Xue, and J. Irazuzta. 1999. Hypothermia attenuates b1 integrin expression on neutrophils in an animal model of meningitis. Ped. Res. 45:173.Google Scholar
  43. 43.
    Clifton, G., J. Jiang, B. Lyeth, L. Jenkins, R. Hamm, and R. Hayes. 1991. Marked protection by moderate hypothermia after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 11:114–121.Google Scholar
  44. 44.
    Dietrich, W., O. Alonso, R. Busto, M. Globus, and M. Ginsberg. 1994. Post-traumatic brain hypothermia reduces histopathologic damage following concussive brain injury in the rat. Acta Neuropathol. 87:250–258.Google Scholar
  45. 45.
    Clifton, G., S. Allen, P. Barrodale, P. Plenger, J. Berry, S. Koch, J. Fletcher, R. Hayes, and S. Choi. 1993. A phase II study of moderate hypothermia in severe brain injury. J. Neurotrauma. 10:263–271.Google Scholar
  46. 46.
    Cornejo, C., P. Kierney, N. Vedder, and R. Winn. 1998. Mild hypothermia during reperfusion reduces injury following ischemia of the rabbit ear. Shock 9:116–120.Google Scholar
  47. 47.
    Bering, E. 1961. Effect of body temperature change on cerebral oxygen consumption of the intact monkey. Am. J. Physiol. 31:417–419.Google Scholar
  48. 48.
    Marion, D., L. Penrod, S. Kelsey, W. Obrist, P. Kochanek, A. Palmer, S. Wisniewski, and S. Dekosky. 1997. Treatment of traumatic brain injury with moderate hypothermia. N.E.J.M. 336:540–546.Google Scholar
  49. 49.
    Garbulinski, T., B. O. Domoradzka, M. Switala, and J. Debowy. 1991. Responses of neutrophils and lymphocytes in cold stress: effects of nonsteroid anti-inflammatory drugs. Pol. J. Pharmacol. Pharm. 43:353–359.Google Scholar
  50. 50.
    Williams, H., N. Rebuck, M. Elliot, and A. Finn. 1998. Changes in leukocyte count and soluble intercellular adhesion molecule-1 and E-selectin during cardiopulmonary bypass in children. Perfusion 13:322–327.Google Scholar
  51. 51.
    Boldt, J., C. Osmer, L. Linke, G. Gorlach, and G. Hemplemann. 1996. Hypothermic versus normothermic cardiopulmonary bypass: influence on circulating adhesion molecules. J. Cardiothorac. Vasc. Anesth. 10:342–347.Google Scholar
  52. 52.
    Menasche, P., J. Peynet, N. Haeffner-Cavaillon, M. Carreno, T. De Chaumaray, V. Dillisse, B. Faris, A. Piwnica, G. Bloch, and A. Tedgui. 1995. Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass. Circulation 92:334–340.Google Scholar
  53. 53.
    Finn, A., N. Moat, N. Rebuck, N. Klein, S. Strobel, and M. Elliot. 1993. Changes in neutrophil CD11b/CD18 and L-selectin expression and release of interleukin 8 and elastase in paediatric cardiopulmonary bypass. Agents Actions 38:44–46.Google Scholar
  54. 54.
    Paugam, C., S. Chollet-Martin, M. Dehoux, D. Chatel, N. Brient, J. Desmonts, and I. Philip. 1997. Neutrophil expression of CD11b/CD18 and IL-8 secretion during northmothermic cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 11:575–579.Google Scholar
  55. 55.
    Hawkins, H. K., S. C. Heffelfinger, and D. C. Anderson. 1992. Leukocyte adhesion deficiency: clinical and postmortem observations. Ped. Path. 12:119–130.Google Scholar
  56. 56.
    Jaeschke, H., A. Farhood, M. A. Fischer, and C. W. Smith. 1996. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of b2 integrins and intercellular adhesion molecule-1. Shock 6:351–356.Google Scholar
  57. 57.
    Doerschuk, C. M., R. K. Winn, H. O. Coxson, and J. M. Harlan. 1990. CD18-dependent and independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J. Immunol. 144:2327–2333.Google Scholar
  58. 58.
    Hellewell, P. G., S. K. Young, P. M. Henson, and G. S. Worthen. 1994. Disparate role of the b2-integrin CD18 in the local accumulation of neutrophils in pulmonary and cutaneous inflammation in the rabbit. Am. J. Respir. Cell Mol. Biol. 10:391–398.Google Scholar
  59. 59.
    Tan, T., C. Smith, E. Hawkins, and S. Kaplan. 1997. Anti-CD11b monoclonal antibody in an infant rat model of Haemophilus influenzae type b sepsis and meningitis. J. Antimicrob. Chemother. 39:209–216.Google Scholar
  60. 60.
    Bogdan, I., S. L. Leib, M. Bergeron, L. Chow, and M. G. Tauber. 1997. Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J. Infect. Dis. 176:693–697.Google Scholar
  61. 61.
    Lahrtz, F., L. Piali, K. Spanaus, J. Seebach, and A. Fontana. 1998. Chemokines and chemotaxis of leukocytes in infectious meningitis. J. Neuroimmunology 85:33–43.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Mark E. Rowin
    • 1
  • Vivian Xue
    • 1
  • Jose Irazuzta
    • 1
  1. 1.Division of Pediatric Critical Care MedicineChildren's Hospital Medical CenterCincinnati

Personalised recommendations