Advertisement

Inflammation

, Volume 25, Issue 3, pp 171–177 | Cite as

Species Dependence for Binding of Small Molecule Agonist and Antagonists to the C5a Receptor on Polymorphonuclear Leukocytes

  • Trent M. Woodruff
  • Anna J. Strachan
  • Sam D. Sanderson
  • Peter N. Monk
  • Allan K. Wong
  • David P. Fairlie
  • Stephen M. Taylor
Article

Abstract

This study investigated the receptor binding affinities of a C5a agonist and cyclic antagonists for polymorphonuclear leukocytes (PMNs) isolated from human, sheep, pig, dog, rabbit, guinea pig, rat and mouse. The affinities of the two small molecule antagonists, F-[OPdChaWR] and AcF-[OPdChaWR], and the agonist, YSFKPMPLaR, revealed large differences in C5a receptor (C5aR) affinities between species. The antagonists bound to human, rat and dog PMNs with similar high affinities, but with lower affinities to PMNs from all other species. The C5a agonist also bound with varying affinities between species, but showed a different affinity profile to the antagonists. In contrast, recombinant human C5a had similar affinity for PMNs of all species investigated. The low correlation between the affinities of the antagonists and the agonist between species either suggests that different receptor residues are important for distinguishing between agonist/antagonist binding, or that the agonist and antagonist peptides bind to two distinct sites within the C5aR.

C5a antagonist C5a agonist leukocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hugli, T. E. 1981. The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Crit. Rev. Immunol. 1:321–366.Google Scholar
  2. 2.
    Stimler, N. P., W. E. Brocklehurst, C. M. Bloor, and T. E. Hugli. 1981. Anaphylatoxin-mediated contraction of guinea pig lung strips: a nonhistamine tissue response. J. Immunol. 126:2258–2261.Google Scholar
  3. 3.
    Marceau, F., C. Lundberg, and T. E. Hugli. 1987. Effects of the anaphylatoxins on circulation. Immunopharmacology 14:67–84.Google Scholar
  4. 4.
    Kohl, J., and D. Bitter-Suermann. 1993. Anaphylatoxins. In: Complement in Health & Disease (Whaley K., Loos, M., and Weiler, J., eds.), Kluwer Academic, Victoria, Australia. 299–324.Google Scholar
  5. 5.
    Tempero, R. M., M. A. Hollingsworth, M. D. Burdick, A. M. Finch, S. M. Taylor, S. M. Vogen, E. L. Morgan, and S. R. A. Sanderson. 1997. Molecular adjuvant effects of a conformationally biased agonist of human C5a anaphylatoxin. J. Immunol. 158:1377–1382.Google Scholar
  6. 6.
    Gerard, N. P., and C. Gerard. 1991. The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617.Google Scholar
  7. 7.
    Gerard, C., L. Bao, O. Orozco, M. Pearson, D. Kunz, and N. P. Gerard. 1992. Structural diversity in the extracellular faces of peptidergic G-protein-coupled receptors. Molecular cloning of the mouse C5a anaphylatoxin receptor. J. Immunol. 149:2600–2606.Google Scholar
  8. 8.
    Perret, J. J., E. Raspe, G. Vassart, and M. Parmentier. 1992. Cloning and functional expression of the canine anaphylatoxin C5a receptor. Evidence for high interspecies variability. Biochem. J. 288:911–917.Google Scholar
  9. 9.
    Alvarez, V., E. Coto, F. Setien, S. Gonzalez-Roces, and C. Lopez-Larrea. 1996. Molecular evolution of the N-formyl peptide and C5a receptors in non-human primates. Immunogenetics 44:446–452.Google Scholar
  10. 10.
    Akatsu, H., T. Miwa, C. Sakurada, Y. Fukuoka, J. A. Ember, T. Yamamoto, T. E. Hugli, and H. Okada. 1997. cDNA cloning and characterization of rat C5a anaphylatoxin receptor. Microbiol. Immunol. 41:575–580.Google Scholar
  11. 11.
    Fukuoka, Y., J. A. Ember, A. Yasui, and T. E. Hugli. 1998. Cloning and characterization of the guinea pig C5a anaphylatoxin receptor: interspecies diversity among the C5a receptors: Int. Immunol. 10:275–283.Google Scholar
  12. 12.
    Bachvarov, D. R., S. Houle, M. Bachvarova, J. Bouthillier, S. A. St.-Pierre, Y. Fukuoka, J. A. Ember, and F. Marceau. 1999. Cloning and preliminary pharmacological characterization of the anaphylatoxin C5a receptor in the rabbit. Br. J. Pharmacol. 128:321–326.Google Scholar
  13. 13.
    Gerard, C., and N. P. Gerard. 1994. C5a anaphylatoxin and its seven transmembrane-segment receptor. Annu. Rev. Immunol. 12:775–808.Google Scholar
  14. 14.
    Jose, P. J., I. K. Moss, R. N. Maini, and T. J. Williams. 1990. Measurement of the chemotactic complement fragment C5a in rheumatoid synovial fluids by radioimmunoassay: role of C5a in the acute inflammatory phase. Ann. Rheum. Dis. 49:747–752.Google Scholar
  15. 15.
    Wang, Y., S. A. Rollins, J. A. Madri, and L. A. Matis. 1995. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl. Acad. Sci. U.S.A. 92:8955–8959.Google Scholar
  16. 16.
    Gasque, P., S. K. Singhrao, J. W. Neal, O. Gotze, and B. P. Morgan. 1997. Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am. J. Pathol. 150:31–41.Google Scholar
  17. 17.
    Smedegard, G., L. X. Cui, and T. E. Hugli. 1989. Endotoxininduced shock in the rat. A role for C5a. Am. J. Pathol. 135:489–497. Receptor Affinities of C5a Analogues 177Google Scholar
  18. 18.
    Short, A., A. K. Wong, A. M. Finch, G. Haaima, I. A. Shiels, D. P. Fairlie, and S. M. Taylor. 1999. Effects of a new C5a receptor antagonist on C5a-and endotoxin-induced neutropenia in the rat. Br. J. Pharmacol. 126:551–554.Google Scholar
  19. 19.
    Stevens, J. H., P. O'Hanley, J. M. Shapiro, F. G. Mihm, P. S. Satoh, J. A. Collins, and T. A. Raffin. 1986. Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J. Clin. Invest. 77:1812–1816.Google Scholar
  20. 20.
    Finch, A. M., A. K. Wong, N. J. Paczkowski, S. K. Wadi, D. J. Craik, D. P. Fairlie, and S. M. Taylor. 1999. Low-molecularweight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J. Med. Chem. 42:1965–1974.Google Scholar
  21. 21.
    Paczkowski, N. J., A. M. Finch, J. B. Whitmore, A. J. Short, A. K. Wong, P. N. Monk, S. A. Cain, D. P. Fairlie, and S. M. Taylor. 1999. Pharmacological characterization of antagonists of the C5a receptor. Br. J. Pharmacol. 128:1461–1466.Google Scholar
  22. 22.
    Finch, A. M., S. M. Vogen, S. A. Sherman, L. Kirnarsky, S. M. Taylor, and S. D. Sanderson. 1997. Biologically active conformer of the effector region of human C5a and modulatory effects of Nterminal receptor binding determinants on activity. J. Med. Chem. 40:877–884.Google Scholar
  23. 23.
    Wong, A. K., A. M. Finch, G. K. Pierens, D. J. Craik, S. M. Taylor, and D. P. Fairlie. 1998. Small molecular probes for G-proteincoupled C5a receptors: conformationally constrained antagonists derived from the C terminus of the human plasma protein C5a. J. Med. Chem. 41:3417–3425.Google Scholar
  24. 24.
    Sanderson, S. D., L. Kirnarsky, S. A. Sherman, J. A. Ember, A. M. Finch, and S. M. Taylor. 1994. Decapeptide agonists of human C5a: the relationship between conformation and spasmogenic and platelet aggregatory activities. J. Med. Chem. 37:3171–3180.Google Scholar
  25. 25.
    Strachan, A. J., T. M. Woodruff, G. Haaima, D. P. Fairlie, and S. M. Taylor. 2000. A New Small Molecule C5a Receptor Antagonist Inhibits the Reverse-Passive Arthus Reaction and Endotoxic Shock in Rats. J. Immunol. 164:6560–6565.Google Scholar
  26. 26.
    Siciliano, S. J., T. E. Rollins, J. DeMartino, Z. Konteatis, L. Malkowitz, R. G. Van, S. Bondy, H. Rosen, and M. S. Springer. 1994. Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 91:1214–1218.Google Scholar
  27. 27.
    DeMartino, J. A., R. G. Van, S. J. Siciliano, C. J. Molineaux, Z. D. Konteatis, H. Rosen, and M. S. Springer. 1994. The amino terminus of the human C5a receptor is required for high affinity C5a binding and for receptor activation by C5a but not C5a Analogs. J. Biol. Chem. 269:14446–14450.Google Scholar
  28. 28.
    Mery, L., and F. Boulay. 1994. The NH2-terminal region of C5aR but not that of FPR is critical for both protein transport and ligand binding. J. Biol. Chem. 269:3457–3463.Google Scholar
  29. 29.
    Monk, P. N., M. D. Barker, L. J. Partridge, and J. E. Pease. 1995. Mutation of glutamate 199 of the human C5a receptor defines a binding site for ligand distinct from the receptor N terminus. J. Biol. Chem. 270:16625–16629.Google Scholar
  30. 30.
    DeMartino, J. A., Z. D. Konteatis, S. J. Siciliano, R. G. Van, D. J. Underwood, P. A. Fischer, and M. S. Springer. 1995. Arginine 206 of the C5a receptor is critical for ligand recognition and receptor activation by C-terminal hexapeptide analogs. J. Biol. Chem. 270:15966–15969.Google Scholar
  31. 31.
    Raffetseder, U., D. Roper, L. Mery, C. Gietz, A. Klos, J. Grotzinger, A. Wollmer, F. Boulay, J. Kohl, and W. Bautsch. 1996. Site-directed mutagenesis of conserved charged residues in the helical region of the human C5a receptor. Arg206 determines highaffinity binding sites of C5a receptor. Eur. J. Biochem. 235:82–90.Google Scholar
  32. 32.
    Kawatsu, R., S. D. Sanderson, I. Blanco, N. Kendall, A. M. Finch, S. M. Taylor, and D. Colcher. 1996. Conformationally biased analogs of human C5a mediate changes in vascular permeability. J. Pharmacol. Exp. Ther. 278:432–440.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Trent M. Woodruff
    • 1
  • Anna J. Strachan
    • 1
  • Sam D. Sanderson
    • 2
  • Peter N. Monk
    • 3
  • Allan K. Wong
    • 4
  • David P. Fairlie
    • 4
  • Stephen M. Taylor
    • 1
  1. 1.Department of Physiology and PharmacologyAustralia
  2. 2.Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmaha
  3. 3.Department of Molecular Biology and BiotechnologyUniversity of SheffieldUnited Kingdom
  4. 4.Centre for Drug Design and DevelopmentUniversity of QueenslandAustralia

Personalised recommendations