Evolutionary Ecology

, Volume 14, Issue 4–6, pp 373–392

Tolerance of Gentianella campestris in relation to damage intensity: an interplay between apical dominance and herbivory

  • Ari-Pekka Huhta
  • Tommy Lennartsson
  • Juha Tuomi
  • Pasi Rautio
  • Kari Laine
Article

Abstract

Meristem allocation models suggest that the patterns of compensatory regrowth responses following grazing vary, depending on (i) the number of latent meristems that escape from being damaged, and (ii) the activation sensitivity of the meristems in relation to the degree of damage. We examined the shape of compensatory responses in two late-flowering populations (59°20′N and 65°45′N) of the field gentian. Plants of equal initial sizes were randomly assigned to four treatment groups with 0, 10, 50 and 75% removal of the main stalk. The plants were clipped before flowering, and their performance was studied at the end of the growing season. The northern population showed a linear decrease in shoot biomass and fecundity with increasing biomass removal, while the response in the southern population was quadratic with maximum performance at the damage level of 50% clipping. This nonlinear shape depended upon the activation sensitivity of dormant meristems in relation to their position along the main stem. The highest plant performance was achieved by inflicting intermediate damage which induced regrowth from basally located meristems. In contrast, the topmost branches took over the dominance role of the main stem after minor apical damage (10% clipping). Consequently, the breakage of apical dominance is a necessary precondition of vigorous regrowth in this species. However, compensation in the field gentian is unlikely to be a mere incidental by-product of apical dominance. The ability to regrow from basally located meristems that escape from being damaged by grazing may well be a sign of adaptation to moderate levels of shoot damage.

apical dominance Gentianella grazing tolerance herbivory meristem allocation overcompensation shoot architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarssen, L.W. (1995) Hypotheses for the evolution of apical dominance in plants: implications for the interpretation of overcompensation. Oikos 74, 149-256.Google Scholar
  2. Aarssen, L.W. and Irwin, D.L. (1991) What selection: herbivory or competition. Oikos 60, 261-262.Google Scholar
  3. Alward, R.D. and Joern, A. (1993) Plasticity and overcompensation in grass responses to herbivory. Oecologia 95, 358-364.CrossRefGoogle Scholar
  4. Aronsson, M., Hallinbäck, T. and Mattsson, J-E. (1995) Rödlistade växter i Sverige 1995. Art-Databanken, Uppsala.Google Scholar
  5. Belsky, A.J. (1986) Does herbivory benefit plants? A review of the evidence. Am. Nat. 127, 870-892.CrossRefGoogle Scholar
  6. Benner, B.L. (1988) Effects of apex removal and nutrient supplementation on branching and seed production in Thlaspi arvense (Brassicaceae). Amer. J. Bot. 75, 645-651.CrossRefGoogle Scholar
  7. Bergelson, J. and Crawley, M.J. (1992a) Herbivory and Ipomopsis aggregata the disadvantages of being eaten. Am. Nat. 139, 870-882.CrossRefGoogle Scholar
  8. Bergelson, J. and Crawley, M.J. (1992b) The effects of grazers on the performance of individuals and populations of scarlet gilia, Ipomopsis aggregata. Oecologia 90, 435-444.CrossRefGoogle Scholar
  9. Bergelson, J., Juenger, T. and Crawley, M.J. (1996) Regrowth following herbivory in Ipomopsis aggregata: compensation but not overcompensation. Am. Nat. 148, 744-755.CrossRefGoogle Scholar
  10. Bryant, J.P., Chapin, F.S. and Klein, D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368.Google Scholar
  11. Conover, W.J. and Iman, R.L. (1982) Analysis of covariance using the rank transformation. Biometrics 38, 715-724.PubMedCrossRefGoogle Scholar
  12. Crawley, M.J. (1997) Life history and environment. In M.J. Crawley (ed.) Plant Ecology. Blackwell Science, Oxford, pp. 73-131.Google Scholar
  13. Escarré, J., Lepart, J. and Sentuc, J.J. (1996) Effects of simulated herbivory in three old field compositae with different inflorescence architectures. Oecologia 105, 501-508.CrossRefGoogle Scholar
  14. Geber, M.A. (1990) The cost of meristem limitation in Polygonum arenastrum: negative genetic correlations between fecundity and growth. Evolution 44, 799-819.CrossRefGoogle Scholar
  15. Georgiadis, N.J., Ruess, R.W., McNaughton, S.J. and Western, D. (1989) Ecological conditions that determine when grazing stimulates grass production. Oecologia 81, 316-322.Google Scholar
  16. Hallé, F. (1986) Modular growth in seed plants. Philos. Trans. R. Soc. Lond. B 313, 77-87.Google Scholar
  17. Hämet-Ahti, L., Suominen, J., Ulvinen, T. and Uotila, P. (eds) (1998) Retkeilykasvio (Field Flora of Finland). Finnish Museum of Natural History, Botanical Museum, Helsinki.Google Scholar
  18. Hendrix, S.D. and Trapp, E.J. (1989) Floral herbivory in Pastinaca sativa: do compensatory responses offset reductions in fitness. Evolution 43, 891-895.CrossRefGoogle Scholar
  19. Huhta, A-P. and Rautio, P. (1998) Evaluating the impacts of mowing: a case study comparing managed and abandoned meadow patches. Ann. Bot. Fenn. 35, 85-99.Google Scholar
  20. Huhta, A-P., Tuomi, J. and Rautio, P. (2000) Cost of apical dominance in two monocarpic herbs, Erysimum strictum and Rhinanthus minor. Can. J. Bot., 78, 591-599.CrossRefGoogle Scholar
  21. Hultén, E. and Fries, M. (1986) Atlas of North European Vascular Plants, North of the Trophic of Cancer. Koeltz Scientific Books, Königstein.Google Scholar
  22. Irwin, D.L. and Aarssen, L.W. (1996) Testing the cost of apical dominance in vegetation: a field study of three species. Ann. Bot. Fenn. 33, 123-128.Google Scholar
  23. Järemo, J., Nilsson, P. and Tuomi, J. (1996) Plant compensatory growth: herbivory or competition? Oikos 77, 238-247.Google Scholar
  24. Juenger, T. and Bergelson, J. (1997) Pollen and resource limitation of compensation to herbivory in scarlet gilia, Ipomopsis aggregata. Ecology 78, 1684-1695.CrossRefGoogle Scholar
  25. Juenger, T. and Bergelson, J. (2000) The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata; herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution 54, 764-777.PubMedCrossRefGoogle Scholar
  26. Juenger, T., Lennartsson, T. and Tuomi, J. (2000). The evolution of tolerance to damage in Gentianella campestris: natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393-419 (this issue).CrossRefGoogle Scholar
  27. Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago.Google Scholar
  28. Kelly, D. (1989) Demography of short-lived plants in chalk grassland. I. Life-cycle variation in annuals and strict biennials. J. Ecol. 77, 747-769.CrossRefGoogle Scholar
  29. Lehtilä, K. (1999) Impact of herbivore tolerance and resistance on plant life histories. In T. Vuorisalo and P. Mutikainen, (eds) Life History Evolution in Plants. Kluwer Academic Publishers, Dordrecht, pp. 303-328.Google Scholar
  30. Lehtilä, K. and Syrjänen, K. (1995) Compensatory responses of two Melampyrum species after damage. Funct. Ecol. 9, 511-517.CrossRefGoogle Scholar
  31. Lennartsson, T. and Svensson, R. (1996) Patterns in the decline of three species of Gentianella in Sweden illustrating the deteoriation of semi-natural grasslands. Symb. Bot. Upsal. 31, 169-184.Google Scholar
  32. Lennartsson, T., Tuomi, J. and Nilsson, P. (1997) Evidence for the evolutionary history of over-compensation in the grassland biennial Gentianella campestris (Gentianaceae). Am. Nat. 149, 1147-1155.CrossRefGoogle Scholar
  33. Lennartsson, T., Nilsson, P. and Tuomi, J. (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology 79, 1061-1072.CrossRefGoogle Scholar
  34. Lennartsson, T., Oostermeijer, G.B., van Dijk, J. and Nijs, H.C.M. (2000) Ecological significance of floral reproductive traits in Gentianella campestris (Gentianaceae). Basic and Applied Ecology 1, 69-81.CrossRefGoogle Scholar
  35. Mabry, C.M. and Wayne, P.W. (1997) Defoliation of the annual herb Abutilon theophrasti: mechanisms underlying reproductive compensation. Oecologia 111, 225-232.CrossRefGoogle Scholar
  36. Maschinski, J. and Whitham, T.G. (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability and timing. Am. Nat. 134, 1-19.CrossRefGoogle Scholar
  37. McNaughton, S.J. (1979) Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113, 691-703.CrossRefGoogle Scholar
  38. McNaughton, S.J. (1983) Compensatory plant growth as a response to herbivory. Oikos 40, 329-336.Google Scholar
  39. Montgomery, D.C. (1984) Design and Analysis of Experiments. 2nd edn. John Wiley and Sons, New York.Google Scholar
  40. Moorby, J. and Wareing, P.F. (1963) Ageing in woody plants. Annals of Botany 27, 293-309.Google Scholar
  41. Nilsson, P., Tuomi, J. and Åström, M. (1996a) Bud dormancy as a bet-hedging strategy. Am. Nat. 147, 269-281.CrossRefGoogle Scholar
  42. Nilsson, P., Tuomi, J. and Åström, M. (1996b) Even repeated grazing may select for overcompensation. Ecology 77, 1942-1946.CrossRefGoogle Scholar
  43. Oesterheld, M. (1992) Effect of defoliation intensity on aboveground and belowground relative growth rates. Oecologia 92, 313-316.CrossRefGoogle Scholar
  44. Oesterheld, M. and McNaughton, S.J. (1988) Intraspecific variation in the response of Themeda triandra to defoliation: the effect of time of recovery and growth rates on compensatory growth. Oecologia 77, 181-186.CrossRefGoogle Scholar
  45. Owen, D. and Wiegert, R.G. (1981) Mutualism between grasses and grazers: an evolutionary hypothesis. Oikos 36, 376-378.Google Scholar
  46. Påhlsson, L. (ed.) (1994) Öppen brukningsbetingad vegetation. In Vegetationstyper i Norden. TemaNord 1994: 665. Nordiska ministerrådet, Köpenhamn, pp. 381-457.Google Scholar
  47. Paige, K.N. (1992) Overcompensation in response to mammalian herbivory: from mutualistic to antagonistic interactions. Ecology 73, 2076-2085.CrossRefGoogle Scholar
  48. Paige, K.N. (1994) Herbivory and Ipomopsis aggregata: differences in response, differences in experimental protocol: a reply to Bergelson and Crawley. Am. Nat. 143, 739-749.CrossRefGoogle Scholar
  49. Paige, K.N. (1999) Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia 118, 316-323.CrossRefGoogle Scholar
  50. Paige, K.N. and Whitham, T.G. (1987) Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat. 129, 407-416.CrossRefGoogle Scholar
  51. Preston, K.A. (1998) Architectural constraints on flower number in a photoperiodic annual. Oikos 81, 279-288.Google Scholar
  52. Prins, A.H., Verkaar, H.J. and Van Den Herik, M. (1989) Responses of Cynoglossum officinale L. and Senecio jacobaea to various degrees of defoliation. New Phytologist 111, 725-731.CrossRefGoogle Scholar
  53. Rassi, P., Kaipiainen, H., Mannerkoski, I. and Ståhls, G. (1991) Uhanalaisten kasvien ja eläinten seurantakomitean mietintö (Report on the monitoring of threatened animals and plants in Finland). Committee Report 1991: 30, Min. Env., Helsinki.Google Scholar
  54. Reichman, O.J. and Smith, S.C. (1991) Responses to simulated leaf and root herbivory by a biennial Tragopogon dubius. Ecology 72, 116-124.CrossRefGoogle Scholar
  55. Sachs, T. 1999. Node counting: an internal control of balanced vegetative and reproductive development. Plant, Cell and Environment 22, 757-766.CrossRefGoogle Scholar
  56. Saville, D.J. (1990) Multiple comparison procedures: the practical solution. The American Statistician 44, 174-180.CrossRefGoogle Scholar
  57. Sokal, R.R. and Rolf, F.J. (1995) Biometry. 3rd edn. W.H. Freeman and Company, New York.Google Scholar
  58. Stephenson, W.R. and Jacobson, D. (1988) A comparison of nonparametric analysis of covariance techniques. Communications in Statistics, Simulation and Computation 17, 451-461.Google Scholar
  59. Suzuki, T. (1990) Apical control of lateral bud development and shoot growth in mulberry (Morus alba). Physiol. Plant. 80, 350-356.CrossRefGoogle Scholar
  60. Tollrian, R. and Harvell, C.R. (1999) The Ecology and Evolution of Inducible Defences. Princeton University Press, Princeton, New Jersey.Google Scholar
  61. Tuomi, J., Nilsson, P. and Åström, M. (1994) Plant compensatory responses: bud dormancy as an adaptation to herbivory. Ecology 75, 1429-1436.CrossRefGoogle Scholar
  62. Venecz, J.I. and Aarssen, L.W. (1998) Effects of shoot apex removal in Lythrum salicaria (Lythraceae): assessing the costs of reproduction and apical dominance. Ann. Bot. Fenn. 35, 101-111.Google Scholar
  63. Verkaar, H.J., van der Meijden, E. and Breebart, L. (1986) The responses of Cynoglossum officinale L. and Verbascum thapsus L. New Phytologist 104, 121-129.CrossRefGoogle Scholar
  64. Wegener, C. and Odasz, A.M. (1997) Effects of laboratory simulated grazing on biomass of the perennial Arctic grass Dupontia fisheri from Svalbard: evidence of overcompensation. Oikos 79, 496-502.Google Scholar
  65. Whitham, T.G., Maschinski, J., Larson, K.C. and Paige K.N. (1991) Plant responses to herbivory: the continuum from negative to positive and the underlying physiological mechanisms. In P.W. Price, T.W. Lewinsohn, G.W. Fernandes and W.W. Benson, (eds) Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley and Sons, New York, pp. 227-256.Google Scholar
  66. Zar, J.H. (1996) Biostatistical Analysis. 3rd edn. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
  67. Zieslin, N. and Halevy, A.H. (1976) Components of axillary bud inhibition in rose plants. 1. The effect of different plant parts (correlative inhibition). Bot. Gaz. 137, 291-296.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ari-Pekka Huhta
    • 1
  • Tommy Lennartsson
    • 2
  • Juha Tuomi
    • 1
  • Pasi Rautio
    • 1
  • Kari Laine
    • 1
  1. 1.Department of BiologyUniversity of OuluOuluFinland
  2. 2.Department of Conservation Biology, Section of Conservation BotanySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations