Hyperfine Interactions

, 130:5 | Cite as

Nanocrystalline materials – Current research and future directions

  • C. Suryanarayana
  • C.C. Koch

Abstract

Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential applications of nanocrystalline materials.

nanocrystalline materials synthesis inert gas condensation mechanical alloying electrodeposition crystallization of amorphous alloys grain boundaries thermal stability grain growth mechanical properties magnetic properties electrical properties applications 

References

  1. [1]
    C. Suryanarayana, Inter. Mater. Rev. 40 (1995) 41.Google Scholar
  2. [2]
    J.M. Silcock, T.J. Heal and H.K. Hardy, J. Inst. Metals 82 (1953–54) 239.Google Scholar
  3. [3]
    J.B. Cohen, Metall. Trans. 23A (1992) 2685.Google Scholar
  4. [4]
    R.M. Scanlan, W.A. Fietz and E.F. Koch, J. Appl. Phys. 46 (1975) 2244.CrossRefADSGoogle Scholar
  5. [5]
    A.A. Voevodin, S.V. Prasad and J.S. Zabinski, J. Appl. Phys. 82 (1997) 855.CrossRefADSGoogle Scholar
  6. [6]
    H. Gleiter, Prog. Mater. Sci. 33 (1989) 223.CrossRefADSGoogle Scholar
  7. [7]
    R. Uyeda, Prog. Mater. Sci. 35 (1991) 1.CrossRefGoogle Scholar
  8. [8]
    R.W. Siegel, in: Processing of Metals and Alloys, Materials Science and Technology-A Comprehensive Treatment, Vol. 15, ed. R.W. Cahn (VCH, Weinheim, Germany, 1991) p. 583.Google Scholar
  9. [9]
    R.W. Siegel, NanoStruct. Mater. 4 (1994) 121.CrossRefGoogle Scholar
  10. [10]
    H. Gleiter, NanoStruct. Mater. 6 (1995) 3.CrossRefGoogle Scholar
  11. [11]
    C. Suryanarayana and C.C. Koch, in: Non-Equilibrium Processing of Materials, ed. C. Suryanarayana (Elsevier Science, Oxford, UK, 1999) p. 313.Google Scholar
  12. [12]
    C.C. Koch and C. Suryanarayana, in: Microstructure and Properties of Materials, Vol. 2, ed. J.C.M. Li (World Scientific Publishing Corp., Singapore, 2000) p. 359.Google Scholar
  13. [13]
    R.D. Shull and J.M. Sanchez eds., Nanophases and Nanocrystalline Structures (TMS, Warrendale, PA, 1993).Google Scholar
  14. [14]
    G.C. Hadjipanayis and R.W. Siegel, eds., Nanophase Materials: Synthesis, Properties, Applications (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).Google Scholar
  15. [15]
    C. Suryanarayana, J. Singh and F.H. Froes, eds., Processing and Properties of Nanocrystalline Materials (TMS, Warrendale, PA, 1996).Google Scholar
  16. [16]
    D.L. Bourell, ed., Synthesis and Processing of Nanocrystalline Powder (TMS, Warrendale, PA, 1996).Google Scholar
  17. [17]
    A.S. Edelstein and R.C. Cammarata, eds., Nanomaterials: Synthesis, Properties, and Applications (Inst. Physics, Bristol, UK, 1996).Google Scholar
  18. [18]
    E. Ma, B. Fultz, R.D. Shull, J. Morral and P. Nash, eds., Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials (TMS, Warrendale, PA, 1997).Google Scholar
  19. [19]
    C. Suryanarayana and F.H. Froes, Metall. Trans. 23A (1992) 1071.Google Scholar
  20. [20]
    K. Lu, Mater. Sci. Eng. Reports R 16 (1996) 161.CrossRefGoogle Scholar
  21. [21]
    R.W. Siegel, MRS Bulletin 15(10) (1990) 60.Google Scholar
  22. [22]
    C.G. Granqvist and R.A. Buhrman, J. Appl. Phys. 47 (1976) 2200.CrossRefADSGoogle Scholar
  23. [23]
    H. Konrad, T. Haubold, R. Birringer and H. Gleiter, NanoStruct. Mater. 7 (1996) 605.CrossRefGoogle Scholar
  24. [24]
    W. Chang, G. Skandan, S.C. Danforth, B.H. Kear and H. Hahn, NanoStruct. Mater. 4 (1994) 507.MATHCrossRefGoogle Scholar
  25. [25]
    C.C. Koch, NanoStruct. Mater. 2 (1993) 109; and 9 (1997) 13.CrossRefGoogle Scholar
  26. [26]
    C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.CrossRefGoogle Scholar
  27. [27]
    R.Z. Valiev, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 275; NanoStruct. Mater. 6 (1995) 73.Google Scholar
  28. [28]
    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater. 47 (1999) 579.CrossRefGoogle Scholar
  29. [29]
    B.H. Kear and L.E. McCandlish, NanoStruct. Mater. 3 (1993) 19; B.H. Kear and P.R. Strutt, NanoStruct. Mater. 6 (1995) 227.CrossRefGoogle Scholar
  30. [30]
    U. Erb, NanoStruct. Mater. 6 (1995) 533.CrossRefGoogle Scholar
  31. [31]
    I. Bakonyi, E. Toth-Kadar, J. Toth, T. Tarnoczi and A. Cziraki, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 465.Google Scholar
  32. [32]
    D.S. Lashmore and M.P. Dariel, in: Encyclopedia of Materials Science and Engineering, ed. R.W. Cahn (Pergamon Press, Oxford, UK, 1988) suppl. Vol. 1, p. 136.Google Scholar
  33. [33]
    C. Cheung, D. Wood and U. Erb, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 479.Google Scholar
  34. [34]
    Y. Yoshizawa, S. Oguma and K.J. Yamauchi, J. Appl. Phys. 64 (1988) 6044.CrossRefADSGoogle Scholar
  35. [35]
    K. Lu, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 23.Google Scholar
  36. [36]
    U. Köster, Mater. Sci. Forum 235–238 (1997) 377.ADSGoogle Scholar
  37. [37]
    M.L. Trudeau, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. l53.Google Scholar
  38. [38]
    R.L. Bickerdike, D. Clark, J.N. Easterbrook, G. Hughes, W.N. Mair, P.G. Partridge and H.C. Ranson, Internat. J. Rapid Solidification 1 (1984–85) 305.Google Scholar
  39. [39]
    G. Liu, Adv. Mater. 9 (1997) 437.CrossRefGoogle Scholar
  40. [40]
    M.N. Rittner and T. Abraham, JOM 50(1) (1998) 36.Google Scholar
  41. [41]
    K. Okazaki, in: Advanced Synthesis of Engineered Structural Materials, eds. J.J. Moore et al. (ASM International, Materials Park, OH, 1993) p. 197.Google Scholar
  42. [42]
    M.J. Mayo, Internat. Mater. Rev. 41 (1996) 85.Google Scholar
  43. [43]
    R.J. Dowding, J.J. Stiglich and T.S. Sudarshan, in: Advances in Powder Metallurgy & Particulate Materials-1994, Vol. 5, eds. C. Lall and A.J. Neupaver (Metal Powder Industries Federation, Princeton, NJ, 1994) p. 45.Google Scholar
  44. [44]
    J.R. Groza, in: Non-Equilibrium Processing of Materials, ed. C. Suryanarayana (Elsevier Science, Oxford, UK, 1999) p. 347.Google Scholar
  45. [45]
    C. Suryanarayana and G.E. Korth, Met. and Mater. 5 (1999) 121.CrossRefGoogle Scholar
  46. [46]
    G.W. Nieman and J.R. Weertman, in: Proc. M.E. Fine Symposium, eds. P.K. Liaw et al. (TMS, Warrendale, PA, 1991) p. 243.Google Scholar
  47. [47]
    J. Weismüller, J. Löfler, C. Krill, R. Birringer and H. Gleiter, in preparation; quoted in [54].Google Scholar
  48. [48]
    X.D. Liu, K. Lu, B.Z. Ding and Z.Q. Hu, NanoStruct. Mater. 2 (1993) 581.CrossRefGoogle Scholar
  49. [49]
    M.L. Sui and K. Lu, Mater. Sci. Eng. A179–180 (1994) 541.Google Scholar
  50. [50]
    X.D. Liu, H.Y. Zhang, K. Lu and Z.Q. Hu, J. Phys. C 6 (1994) L497.ADSGoogle Scholar
  51. [51]
    H.Y. Zhang, K. Lu and Z.Q. Hu, J. Phys. C 7 (1995) 5327.Google Scholar
  52. [52]
    D. Chen, NanoStruct. Mater. 4 (1994) 753.MATHCrossRefGoogle Scholar
  53. [53]
    K. Kimoto and I. Nishida, J. Phys. Soc. Jap. 22 (1967) 744.CrossRefADSGoogle Scholar
  54. [54]
    J. Weismüller, in: Synthesis and Processing of Nanocrystalline Powder, ed. D.L. Bourell (TMS, Warrendale, PA, 1996) p. 3.Google Scholar
  55. [55]
    J. Weismüller, J. Löfler and M. Kebler, NanoStruct. Mater. 6 (1995) 105.CrossRefGoogle Scholar
  56. [56]
    R. Birringer, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 157.Google Scholar
  57. [57]
    R.W. Siegel, in: Materials Interfaces: Atomic Level Structure and Properties, eds. D. Wolf and S. Yip (Chapman & Hall, London, UK, 1992) p. 431.Google Scholar
  58. [58]
    H. Ouyang, B. Fultz and H. Kuwano, in: Nanophases and Nanocrystalline Structures, eds. R.D. Shull and J.M. Sanchez (TMS, Warrendale, PA, 1993) p. 95. C. Suryanarayana, C.C. Koch / Nanocrystalline materials 43Google Scholar
  59. [59]
    S.R. Phillpot, D. Wolf and H. Gleiter, J. Appl. Phys. 78 (1995) 847.CrossRefADSGoogle Scholar
  60. [60]
    Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon, J. Mater. Res. 11 (1996) 1880.ADSGoogle Scholar
  61. [61]
    D.H. Ping, D.X. Li and H.Q. Ye, J. Mater. Sci. Lett. 14 (1995) 1536.CrossRefGoogle Scholar
  62. [62]
    T.R. Malow and C.C. Koch, in: Synthesis and Processing of Nanocrystalline Powder, ed. D.L. Bourell (TMS, Warrendale, PA, 1996) p. 33.Google Scholar
  63. [63]
    B. Günther, A. Kumpmann and H.D. Kunze, Scripta Metall. Mater. 27 (1992) 833.CrossRefGoogle Scholar
  64. [64]
    J. Eckert, J.C. Holzer and W.L. Johnson, J. Appl. Phys. 73 (1993) 131.CrossRefADSGoogle Scholar
  65. [65]
    T.R. Malow and C.C. Koch, Acta Mater. 45 (1997) 2177.CrossRefGoogle Scholar
  66. [66]
    V.Y. Gertsman and R. Birringer, Scripta Metall. Mater. 30 (1994) 577.CrossRefGoogle Scholar
  67. [67]
    C.E. Krill, R. Klein, S. Janes and R. Birringer, Mater. Sci. Forum 179–181 (1995) 443.Google Scholar
  68. [68]
    H. Hahn, J. Logas and R.S. Averback, J. Mater. Res. 5 (1990) 609.ADSGoogle Scholar
  69. [69]
    J. Horvath, Defect & Diff. Forum 66–69 (1989) 207.Google Scholar
  70. [70]
    S. Schumacher, R. Birringer, R. Strauss and H. Gleiter, Acta Metall. 37 (1989) 2485.CrossRefGoogle Scholar
  71. [71]
    B.S. Bokstein, H.D. Bröse, L.I. Trusov and T.P. Khvostantseva, NanoStruct. Mater. 6 (1995) 873.CrossRefGoogle Scholar
  72. [72]
    E. Ivanov, Mater. Sci. Forum 88–90 (1992) 475.Google Scholar
  73. [73]
    R.W. Siegel and H. Hahn, in: Current Trends in the Physics of Materials, ed. M. Youssouff (World Sci. Pub. Co., Singapore, 1987) p. 403.Google Scholar
  74. [74]
    J. Karch, R. Birringer and H. Gleiter, Nature 330 (1987) 556.CrossRefADSGoogle Scholar
  75. [75]
    M.S. Choudry, J.A. Eastman, R.J. DiMelfi and M. Dollar, Scripta Mater. 37 (1997) 843.CrossRefGoogle Scholar
  76. [76]
    K. Lu and M.L. Sui, Acta Metall. Mater. 43 (1995) 3325.CrossRefGoogle Scholar
  77. [77]
    T. Turi and U. Erb, Mater. Sci. & Eng. A204 (1995) 34.CrossRefGoogle Scholar
  78. [78]
    E. Hellstern, H.J. Fecht, Z. Fu and W.L. Johnson, J. Appl. Phys. 65 (1989) 305.CrossRefADSGoogle Scholar
  79. [79]
    H.Y. Bai, L. Luo, D. Jin and J.R. Sun, J. Appl. Phys. 79 (1996) 361.CrossRefADSGoogle Scholar
  80. [80]
    M.L. Steigerwald and L.E. Brus, Ann. Rev. Mater. Sci. 19 (1989) 471.CrossRefGoogle Scholar
  81. [81]
    G. Skandan, H. Hahn and J.C. Parker, Scripta Metall. Mater. 25 (1991) 2389.CrossRefGoogle Scholar
  82. [82]
    G.D. Stucky and J.E. MacDougall, Science 27 (1990) 669.ADSGoogle Scholar
  83. [83]
    D.G. Morris, in: Mechanical Properties of Nanostructured Materials, Materials Science Foundations, Vol. 2 (Trans. Tech. Publ., Zürich, Switzerland, 1998).Google Scholar
  84. [84]
    L. Wong, D. Ostrander, U. Erb, G. Palumbo and K.T. Aust, in: Nanophases and Nanocrystalline Structures, eds. R.D. Shull and J.M. Sanchez (TMS, Warrendale, PA, 1993) p. 85.Google Scholar
  85. [85]
    T.D. Shen, C.C. Koch, T.Y. Tsui and G.M. Pharr, J. Mater. Res. 10 (1995) 2892.ADSGoogle Scholar
  86. [86]
    A.M. El-Sherik, U. Erb, V. Krstic, B. Szpunar, M.J. Aus, G. Palumbo and K.T. Aust, MRS Symp. Proc. 286 (1993) 173.Google Scholar
  87. [87]
    C.C. Koch, D.G. Morris, K. Lu and A. Inoue, MRS Bulletin 24(2) (1999) 54.Google Scholar
  88. [88]
    P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung and Y.C. Lu, NanoStruct. Mater. 9 (1997) 433.CrossRefGoogle Scholar
  89. [89]
    A. Inoue, N. Nakazato, Y. Kawamura and T. Masumoto, Mater. Sci. & Eng. A179/180 (1994) 654.CrossRefGoogle Scholar
  90. [90]
    S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee, Nature 398 (1999) 684.CrossRefADSGoogle Scholar
  91. [91]
    R.W. Siegel, Mater. Sci. Forum 235–238 (1997) 851.Google Scholar
  92. [92]
    K. Lu, Y.Z. Wang, W.D. Wei and Y.Y. Li, Adv. Cryog. Mater. 38 (1991) 285.Google Scholar
  93. [93]
    X.D. Liu, B.Z. Ding, Z.Q. Hu, K. Lu and Y.Z. Wang, Physica B 192 (1993) 345.CrossRefADSGoogle Scholar
  94. [94]
    X.D. Liu, J.T. Wang and B.Z. Ding, Scripta Metall. Mater. 28 (1993) 59.CrossRefGoogle Scholar
  95. [95]
    J.T. Lee, J.H. Hwang, J.J. Mashek, T.O. Mason, A.E. Miller and R.W. Siegel, J. Mater. Res. 10 (1995) 2295.ADSGoogle Scholar
  96. [96]
    R.N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel and T. Nagarajan, NanoStruct. Mater. 6 (1995) 993.CrossRefGoogle Scholar
  97. [97]
    R.H. Yu, X.X. Zhang, J. Tejada, M. Knobel, P. Tiberto and P. Allia, J. Phys. D 28 (1995) 1770.CrossRefADSGoogle Scholar
  98. [98]
    C.E. Krill, F. Merzoug, W. Krauss and R. Birringer, NanoStruct. Mater. 9 (1997) 455.CrossRefGoogle Scholar
  99. [99]
    U. Erb, G. Palumbo, B. Szpunar and K.T. Aust, NanoStruct. Mater. 9 (1997) 261.CrossRefGoogle Scholar
  100. [100]
    G. Herzer, Scripta Metall. Mater. 33 (1995) 1741.CrossRefGoogle Scholar
  101. [101]
    A. Makino, A. Inoue and T. Masumoto, NanoStruct. Mater. 6 (1995) 985.CrossRefGoogle Scholar
  102. [102]
    A. Makino, A. Inoue and T. Masumoto, Mater. Trans. Jpn. Inst. Metals 36 (1995) 924.Google Scholar
  103. [103]
    L. Schultz, J. Wecker and E. Hellstern, J. Appl. Phys. 61 (1987) 3583.CrossRefADSGoogle Scholar
  104. [104]
    P.A.I. Smith, J. Ding, R. Street and P.G. McCormick, Scripta Mater. 34 (1996) 61.CrossRefGoogle Scholar
  105. [105]
    R.D. Shull, R.D. McMichael and J.J. Ritter, NanoStruct. Mater. 2 (1993) 205.CrossRefGoogle Scholar
  106. [106]
    R. Rofagha, U. Erb, D. Ostrander, G. Palumbo and K.T. Aust, NanoStruct. Mater. 2 (1993) 1.CrossRefGoogle Scholar
  107. [107]
    D.D. Beck and R.W. Siegel, J. Mater. Res. 7 (1992) 2840.ADSGoogle Scholar
  108. [108]
    L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen and R. Schulz, Mater. Sci. Forum 225–227 (1996) 853.CrossRefGoogle Scholar
  109. [109]
    K.Z. Chen, Z.K. Zhang, Z.L. Cui, D.H. Zuo and D.Z. Yang, NanoStruct. Mater. 8 (1997) 205.CrossRefGoogle Scholar
  110. [110]
    M.L. Trudeau and J.Y. Ying, NanoStruct. Mater. 7 (1996) 245.CrossRefGoogle Scholar
  111. [111]
    G. Das, Ceram. Eng. & Sci. Proc. 17 (1996) 25.Google Scholar
  112. [112]
    Adv. Mater. Proc. 146(4) (1994) 25.Google Scholar
  113. [113]
    L.E. McCandlish, V. Kevorkian, K. Jia and T.E. Fischer, in: Advances in Powder Metallurgy & Particulate Materials-1994, Vol. 5, eds. C. Lall and A.J. Neupaver (Metal Powder Industries Federation, Princeton, NJ, 1994) p. 329.Google Scholar
  114. [114]
    M. Gell, Mater. Sci. & Eng. A 204 (1995) 246.CrossRefGoogle Scholar
  115. [115]
    F. Davanloo, T.J. Lee, H. Park, J.H. You and C.B. Colins, J. Mater. Res. 8 (1993) 3090.ADSGoogle Scholar
  116. [116]
    A. Berkowitz, in: Nanomaterials: Synthesis, Properties, and Applications, eds. A.S. Edelstein and R.C. Cammarata (Institute of Physics, Bristol, 1996) p. 569.Google Scholar
  117. [117]
    J.H. Judy, MRS Bulletin 15(3) (1990) 63.Google Scholar
  118. [118]
    M.P. Sharrock, MRS Bulletin 15(3) (1990) 53.Google Scholar
  119. [119]
    G. Vitulli, E. Pitzalis, A. Verrazzani, P. Pertici, P. Salvadori and G. Martra, Mater. Sci. Forum 235–238 (1997) 929.Google Scholar
  120. [120]
    J.H. Sinfelt and G.D. Meitzner, Accounts Chem. Res. 26 (1993) 1.CrossRefGoogle Scholar
  121. [121]
    D.R. Rolison, in: Nanomaterials: Synthesis, Properties, and Applications, eds. A.S. Edelstein and R.C. Cammarata (Institute of Physics, Bristol, 1996) p. 305.Google Scholar
  122. [122]
    P. Tessier, L. Zaluski, A. Zaluska, J.O. Ström-Olsen and R. Schulz, Mater. Sci. Forum 225–227 (1996) 869.Google Scholar
  123. [123]
    M.L. Wasz, R.B. Schwarz, S. Srinivasan and M.P.S. Kumar, Mater. Res. Soc. Symp. Proc. 393 (1995) 237.Google Scholar
  124. [124]
    C.H. Smith, in: Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed. H.H. Liebermann (Marcel-Dekker, New York, 1993) p. 617.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C. Suryanarayana
    • 1
  • C.C. Koch
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations