Pharmaceutical Research

, Volume 18, Issue 5, pp 615–621 | Cite as

CYP2C19 Genotype Related Effect of Omeprazole on Intragastric pH and Antimicrobial Stability

  • Tomoko Kita
  • Yusuke Tanigawara
  • Nobuo Aoyama
  • Takashi Hohda
  • Yoshie Saijoh
  • Fusao Komada
  • Toshiyuki Sakaeda
  • Katsuhiko Okumura
  • Toshiyuki Sakai
  • Masato Kasuga

Abstract

Purpose. A combination of proton pump inhibitors and antimicrobials has been applied as an anti–Helicobacter pylori (H. pylori) therapy. Omeprazole, one of the proton pump inhibitors, is metabolized by CYP2C19, which exhibits genetic polymorphism. It was reported previously that the overall anti–H. pylori efficacy can be related to the CYP2C19 genotype. The main aim of the present study was to obtain a rational explanation for the relationship between the overall anti–H. pylori efficacy and the CYP2C19 genotype.

Methods. Six healthy volunteers were classified as extensive metabolizers and poor metabolizers, according to their CYP2C19 genotypes. Plasma concentrations and intragastric pH were monitored prior to and until 24 h after the administration of 20 mg omeprazole. The stability of amoxicillin, clarithromycin, and metronidazole was examined using buffer solutions with monitored intragastric pH, and their remaining percentage in the intragastric space was simulated.

Results. The poor metabolizers, classified by the CYP2C19 genotypes, showed the higher effectiveness in anti–H. pylori therapy, via the higher plasma concentration of omeprazole and the higher intragastric pH, and possibly the higher stability of antimicrobials in the higher intragastric pH.

Conclusions. CYP2C19 genotyping is a very useful method to determine the effective and safe dosage regimen including the selection of the dual and triple therapy in anti–H. pylori therapy.

CYP2C19 genotype omeprazole Helicobacter pylori intragastric pH stability of antimicrobials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    U. A. Meyer and U. M. Zanger. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu. Rev. Pharmacol. Toxicol. 137:269–296 (1997).Google Scholar
  2. 2.
    K. Brosen, S. M. F. de Morais, U. A. Meyer, and J. A. Goldstein. A multifamily study on the relationship between CYP2C19 genotype and S–mephenytoin oxidation phenotype. Pharmacogenetics 5:312–317 (1995).Google Scholar
  3. 3.
    L. Bertisson. Geographical/Interracial differences in polymorphic drug oxidation: Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin. Pharmacokinet. 29:192–209 (1995).Google Scholar
  4. 4.
    J. D. Balian, N. Sukhova, J. W. Haris, et al. The hydroxylation of omeprazole correlates with S–mephenytoin metabolism: a population study. Clin. Pharmacol. Ther. 57:662–669 (1995).Google Scholar
  5. 5.
    S. M. F. de Morais, G. R. Wilkinson, J. Blaisdell, K. Nakamura, U. A. Meyer, and J. A. Goldstein. The major genetic defect responsible for the polymorphism of S–mephenytoin metabolism in humans. J. Biol. Chem. 269:15419–25422 (1994).Google Scholar
  6. 6.
    S. M. F. de Morais, G. R. Wilkinson, J. Blaisdell, U. A. Meyer, K. Nakamura, and J. A. Goldstein. Identification of a new genetic defect responsible for the polymorphism of S–mephenytoin metabolism in Japanese. Mol. Pharmacol. 46:594–598 (1994).Google Scholar
  7. 7.
    I. Ieiri, T. Kubota, A. Urae, et al. Pharmacokinetics of omeprazole (a subtrate of CYP2C19) and comparison with two mutant alleles, CYP2C19m1 in exon 5 and CYP2C19m2 in exon 4, in Japanese subjects. Clin. Pharmacol. Ther. 59:647–53 (1996).Google Scholar
  8. 8.
    T. Kubota, K. Chiba, and T. Ishizaki. Genotyping of S–mephenytoin 4′–hydroxylation in an extended Japanese population. Clin. Pharmacol. Ther. 60:661–666 (1996).Google Scholar
  9. 9.
    G. R. Deng. A sensitive non–radioactive PCR–RFLP analysis for detecting point mutation at 12th codon of oncogene c–Ha–ras in DNAs of gastric cancer. Nucleic Acids Res. 16:6231 (1988).Google Scholar
  10. 10.
    K. Okumura, T. Kita, S. Chikazawa, F. Komada, S. Iwakawa, and Y. Tanigawara. Genotyping of N–acetylation polymorphism and correlation with procainamide metabolism. Clin. Pharmacol. Ther. 61:509–517 (1997).Google Scholar
  11. 11.
    C. W. Howden. Clinical pharmacology of omeprazole. Clin. Pharmacokinet. 20:38–49 (1991).Google Scholar
  12. 12.
    E. Bayerdorffer, S. Miehlke, G. A. Mannes, et al. Double–blind trial of omeprazole and amoxicillin to cure Helicobacter pylori Infection in patients with duodenal ulcer. Gastroenterology 108:1412–1417 (1995).Google Scholar
  13. 13.
    T. Lind, F. Megraud, P. Unge, E. et al. The MACH2 study: Role of omeprazole in eradication of Helicobacter pylori with 1–week triple therapies. Gastroenterology 116:248–253 (1999).Google Scholar
  14. 14.
    J. Labenz, E. Gyenes, G. H. Ruhl, and G. Borsch. Amoxicillin plus omeprazole versus triple therapy for eradication of Helicobacter pylori in duodenal ulcer disease: A prospective, randomised and controlled study. Gut 34:1167–1170 (1993).Google Scholar
  15. 15.
    G. N. J. Tytgat. Review article: Treatments that impact favourably upon the eradication of Helicobacter pylori and ulcer recurrence. Aliment. Pharmacol. Ther. 8:359–368 (1994).Google Scholar
  16. 16.
    J. S. Dixon. Helicobacter pylori eradication: Unravelling the facts. Scand. J. Gastroenterology 30:48–62 (1995).Google Scholar
  17. 17.
    T. Lind, Z. S. van Veldhuyzen, R. Unge, et al. Eradication of Helicobacter pylori using one–week triple therapies combining omeprazole with two antimicrobials: The MACH 1 study. Helicobacter 1:138–144 (1996).Google Scholar
  18. 18.
    G. Cederbrant, G. Kahlmeter, C. Schalen, and C. Kamme. Additive effect of clarithromycin combined with 14–hydroxy clarithromycin, erythromicin, amoxicillin, metronidazole or omeprazole against Helicobacter pylori. J. Antimicrob. Chemother. 34:1025–1029 (1994).Google Scholar
  19. 19.
    Y. J. Debets–Ossenkopp, F. Namavar, and D. M. MacLaren. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 14:353–355 (1995).Google Scholar
  20. 20.
    D. Scott, D. Weeks, K. Melchers, and G. Sachs. The life and death of Helicobacter pylori. Gut 43:S56–S60 (1998).Google Scholar
  21. 21.
    A. F. Goddard, M. J. Jessa, D. A. Barret, et al. Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology 111:358–367 (1996).Google Scholar
  22. 22.
    L. E. Gustavon, J. F. Kaiser, A. L. Edmonds, C. S. Locke, M. L. DeBartolo, and D. W. Schneck. Effect of omeprazole on concentrations of clarithromycin in plasma and gastric tissue at steady state. Antimicrob. Agents Chemother. 39:2078–2083 (1995).Google Scholar
  23. 23.
    P. O. Erah, A. F. Goddard, D. A. Barrett, P. N. Shaw, and R. C. Spiller. The stability of amoxicillin, clarithromycin and metronidazole in gastric juice: Relevance to the treatment of Helicobacter pylori infection. J. Antimicrob. Chemother. 39:5–12 (1997).Google Scholar
  24. 24.
    D. R. Sohn, K. Kobayashi, K. Chiba, K. H. Lee, S. G. Shin, and T. Ishizaki. Disposition kinetics and metabolism of omeprazole in extensive and poor metaolizers of S–mephenytoin 4′–hydroxylation recruited from an Oriental population. J. Pharmacol. Exp. Ther. 262:1195–1202 (1992).Google Scholar
  25. 25.
    Y. Tanigawara, N. Aoyama, T. Kita, et al. CYP2C19 genotype–related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin. Pharmacol. Ther. 66:528–534 (1999).Google Scholar
  26. 26.
    N. Aoyama, Y. Tanigawara, T. Kita, et al. Suffucuent effect of 1–week omeprazole and amoxicillin dual treatment for Helicobacter pylori eradication in cytochrome P450 2C19 poor metabolizers. J. Gastroenterol. 34:80–83 (1999).Google Scholar
  27. 27.
    T. Furuta, K. Ohashi, T. Kamata, M. Takashima, K. Kosuge, T. Kawasaki, et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann. Int. Med. 129:1027–1030 (1998).Google Scholar
  28. 28.
    K. Kobayashi. Simultaneous determination of omeprazole and its metabolites in plasma and urine by reversed–phase high–performance liquid chromatography with an alkaline–resistant polymer–coated C18 column. J. Chromatogra. 579:299–305 (1992).Google Scholar
  29. 29.
    J. Labenz, M. Stolte, A. L. Blum, et al. Intragastric acidity as a predictor of the success of Helicobacter pylori eradication: A study in peptic ulcer patients with omeprazole and amoxicillin. Gut 37:39–43 (1995).Google Scholar
  30. 30.
    A. Sjostedt, M. Sagar, G. Lindberg, B. Wikstrom, C. E. Nord, and R. Seensalu. Prolonged and profound acid inhibition is crucial in Helicobacter pylori treatment with a proton pump inhibitor combined with amoxicillin. Scand. J. Gastroenterology 33:39–43 (1998).Google Scholar
  31. 31.
    Y. J. Debets–Ossenkopp, S M parrius, J. G. Kusters, J. J. Kolkman, and C. M. J. E. Vandenbroucke–Grauls. Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. FEMS Microbiol. Lett. 142:37–42 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Tomoko Kita
    • 1
  • Yusuke Tanigawara
    • 1
    • 2
  • Nobuo Aoyama
    • 3
  • Takashi Hohda
    • 1
  • Yoshie Saijoh
    • 1
  • Fusao Komada
    • 4
    • 5
  • Toshiyuki Sakaeda
    • 1
  • Katsuhiko Okumura
    • 5
  • Toshiyuki Sakai
    • 3
  • Masato Kasuga
    • 3
  1. 1.Department of Hospital Pharmacy, School of MedicineKobe UniversityChuo–ku, KobeJapan
  2. 2.Department of Hospital Pharmacy, School of MedicineKeio UniversityShinjuku–ku, TokyoJapan
  3. 3.Second Department of Internal Medicine, School of MedicineKobe UniversityChuo–ku, KobeJapan
  4. 4.Department of Hospital Pharmacy, School of MedicineKobe UniversityChuo–ku, KobeJapan
  5. 5.Department of Drug Informatics, Faculty of Pharmaceutical SciencesJosai UniversityKeyakidai Sakado, SaitamaJapan

Personalised recommendations