Advertisement

Glycoconjugate Journal

, Volume 17, Issue 7–9, pp 443–464 | Cite as

A journey to the world of glycobiology

  • Akira Kobata
Article

Abstract

Finding of the deletion phenomenon of certain oligosaccharides in human milk and its correlation to the blood types of the donors opened a way to elucidate the biochemical basis of blood types in man. This success led to the idea of establishing reliable techniques to elucidate the structures and functions of the N-linked sugar chains of glycoproteins. N-Linked sugar chains were first released quantitatively as oligosaccharides by enzymatic and chemical means, and labelled by reduction with NaB3H4. After fractionation, structures of the radioactive oligosaccharides were determined by a series of methods developed for the studies of milk oligosaccharides. By using such techniques, structural rules hidden in the N-linked sugar chains, and organ- and species-specific N-glycosylation of glycoproteins, which afforded a firm basis to the development of glycobiology, were elucidated. Finding of galactose deficiency in the N-linked sugar chains of serum lgG from patients with rheumatoid arthritis, and malignant alteration of N-glycosylation in various tumors opened a new research world called glycopathology.

However, recent studies revealed that several structural exceptions occur in the sugar chains of particular glycoproteins. Finding of the occurrence of the Galβ1-4Fucα1- group linked at the C-6 position of the proximal N-acetylglucosamine residue of the hybrid type sugar chains of octopus rhodopsin is one of such examples. This finding indicated that the fucosyl residue of the fucosylated trimannosyl core should no more be considered as a stop signal as has long been believed. Furthermore, recent studies on dystroglycan revealed that the sugar chains, which do not fall into the current classification of N- and O-linked sugar chains, are essential for the expression of the functional role of this glycoprotein.

It was found that expression of many glycoproteins is altered by aging. Among the alterations of the glycoprotein patterns found in the brain nervous system, the most prominent evidence was found in P0. This protein is produced in non-glycosylated form in the spinal cord of young mammals. However, it starts to be N-glycosylated in the spinal cord of aged animals.

These evidences indicate that various unusual sugar chains occur as minor components in mammals, and play important roles in particular tissues.

milk oligosaccharide N-linked sugar chain glycopathology rhodopsin dystroglycan P0 blood types 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhn R, Baer H, Gauhe A, Chem Ber 89, 2513 (1956).Google Scholar
  2. 2.
    Montreuil J, <q>C R Acad Sci 242, 192–3 (1956).Google Scholar
  3. 3.
    Kuhn R, Gauhe A, Justus Liebig's Ann Chem 611, 249–53 (1958).Google Scholar
  4. 4.
    Kuhn R, Baer HH, Chem Ber 89, 504–11 (1956).Google Scholar
  5. 5.
    Kuhn R, Gauhe A, Chem Ber 95, 518–22 (1962).Google Scholar
  6. 6.
    Kuhn R, Baer HH, Gauhe A, Chem Ber 89, 2514–23 (1956).Google Scholar
  7. 7.
    Kuhn R, Baer HH, Gauhe A, Chem Ber 91, 364–74 (1958).Google Scholar
  8. 8.
    Kuhn R, Baer HH, Gauhe A, Justus Liebig's Ann Chem 611, 242–8 (1958).Google Scholar
  9. 9.
    Kuhn R, Gauhe A, Chem Ber 93, 647–51 (1960).Google Scholar
  10. 10.
    Kuhn R, Brossmer R, Chem Ber 92, 1667–71 (1959).Google Scholar
  11. 11.
    Kuhn R, Naturwissenschaften 46, 43–50 (1959).Google Scholar
  12. 12.
    Kuhn R, Gauhe A, Chem Ber 98, 395–413 (1965).Google Scholar
  13. 13.
    Kuhn R, Gauhe A, Chem Ber 95, 513–7 (1962).Google Scholar
  14. 14.
    Hurlbert RB, Schmitz H, Brumm AF, Potter VR, J Biol Chem 209, 23–39 (1954).Google Scholar
  15. 15.
    Kobata A, Suzuoki Z, Kida M, J Biochem (Tokyo) 51, 277–87 (1962).Google Scholar
  16. 16.
    Kobata A, Biochem Biophys Res Commun 7, 346–50 (1962).Google Scholar
  17. 17.
    Kobata A, J Biochem (Tokyo) 53, 167–75 (1963).Google Scholar
  18. 18.
    Kobata A, J Biochem (Tokyo) 59, 63–6 (1966).Google Scholar
  19. 19.
    Jourdian GW, Shimizu F, Roseman S, Fed Proc 20, 161 (1961).Google Scholar
  20. 20.
    Kobata A, Suzuoki Z, Biochim Biophys Acta 107, 405–13 (1965).Google Scholar
  21. 21.
    Nakanishi Y, Shimizu S, Takahashi N, Sugiyama M, Suzuki S, J Biol Chem 242, 967–76 (1967).Google Scholar
  22. 22.
    Ginsburg V, J Biol Chem 235, 2196–201 (1960).Google Scholar
  23. 23.
    Shen L, Groliman EF, Ginsburg V, Proc Natl Acad Sci US 59, 224–30 (1968).Google Scholar
  24. 24.
    Kobata A, Tsuda M, Ginsburg V, Arch Biochem Biophys 130, 509–13 (1969).Google Scholar
  25. 25.
    Grollman EF, Kobata A, Ginsburg V, J Clin Invest 48, 1489–94 (1969).Google Scholar
  26. 26.
    Grollman EF, Kobata A, Ginsburg V, Proc N Y Acad Sci 169, 153–8 (1970).Google Scholar
  27. 27.
    Kobata A, Grollman EF, Ginsburg V, Biochem Biophys Res Commun 32, 272–7 (1968).Google Scholar
  28. 28.
    Kobata A, Groliman EF, Ginsburg V, Arch Biochem Biophys 124, 609–12 (1968).Google Scholar
  29. 29.
    Race C, Ziderman D, Watkins WM, Biochem J 107, 733–5 (1968).Google Scholar
  30. 30.
    Kobata A, Ginsburg V, J Biol Chem 245, 1484–90 (1970).Google Scholar
  31. 31.
    Ball SP, Tongue N, Gibaud A, Le Pendu J, Mollicone R, Gerard G, Oriol R, Ann Hum Genet 55, 225–33 (1991).Google Scholar
  32. 32.
    Kobata A, Ginsburg V, J Biol Chem 244, 5496–560 (1969).Google Scholar
  33. 33.
    Kobata A, Ginsburg V, J Biol Chem 247, 1525–9 (1972).Google Scholar
  34. 34.
    Kobata A, Ginsburg V, Arch Biochem Biophys 150, 273–81 (1972).Google Scholar
  35. 35.
    Yamashita K, Kobata A, Arch Biochem Biophys 161, 164–70 (1974).Google Scholar
  36. 36.
    Ginsburg V, Zopf DA, Yamashita K, Kobata A, Arch Biochem Biophys 175, 565–8 (1976).Google Scholar
  37. 37.
    Fenderson BA, Zehavi U, Hakomori S, J Exp Med 160, 1591–6 (1984).Google Scholar
  38. 38.
    Yamashita K, Tachibana Y, Takasaki S, Kobata A, Nature 262, 702–3 (1976).Google Scholar
  39. 39.
    Newburg DS, Curr Med Chem 6, 117–27 (1999).Google Scholar
  40. 40.
    Takasaki S, Kobata A, J Biochem (Tokyo) 76, 783–9 (1974).Google Scholar
  41. 41.
    Kobata A, Anal Biochem 100, 1–14 (1979).Google Scholar
  42. 42.
    Tai T, Yamashita A, Kobata A, J Biochem (Tokyo) 78, 679–86 (1975).Google Scholar
  43. 43.
    Kobata A, In Molecular Biology and Biotechnology, edited by Meyers RA, (VCH publishers, NY, 1995), pp. 382–5.Google Scholar
  44. 44.
    Cunningham LW, Clouse RW, Ford JD, Biochim Biophys Acta 78, 379–81 (1963).Google Scholar
  45. 45.
    Carlson DM, J Biol Chem 243, 616–26 (1968).Google Scholar
  46. 46.
    Muramatsu T, J Biol Chem 246, 5535–7 (1971).Google Scholar
  47. 47.
    Koide N, Muramatsu T, J Biol Chem 249, 4897–904 (1974).Google Scholar
  48. 48.
    Tarentino AL, Maley F, J Biol Chem 249, 811–7 (1974).Google Scholar
  49. 49.
    Ito S, Muramatsu T, Kobata A, Arch Biochem Biophys 171, 78–86 (1975).Google Scholar
  50. 50.
    Kobata A, In 27th International Congress of Pure and Applied Chemistry, edited by Varmavuori A, (Pergamon Press Oxford, NY, 1980), pp. 185–92.Google Scholar
  51. 51.
    Mizuochi T, Amano J, Kobata A, J Biochem (Tokyo) 95, 1209–13 (1984).Google Scholar
  52. 52.
    Takasaki S, Mizuochi T, Kobata A, Methods Enzymol 83, 263–8 (1982).Google Scholar
  53. 53.
    Matsushima Y, Fujii N, Bull Chem Soc Jpn 30, 48–50 (1957).Google Scholar
  54. 54.
    Yoshizawa Z, Sato T, Schmid K, Biochim Biophys Acta 121, 417–20 (1966).Google Scholar
  55. 55.
    Bayard B, Montreuil J, In Methodologie de la structure et du metabolism des glycoconjugues, (CNRS, Paris, 1974), pp. 208– 18.Google Scholar
  56. 56.
    Montreuil J, Pure Appl Chem 42, 431–77 (1975).Google Scholar
  57. 57.
    Ito S, Yamashita K, Spiro RG, Kobata A, J Biochem (Tokyo) 81, 1621–31 (1977).Google Scholar
  58. 58.
    Tai T, Yamashita K, Ogata-AM, Koide N, Muramatsu T, Iwashita S, Inoue Y, Kobata A, J Biol Chem 250, 8569–75 (1975).Google Scholar
  59. 59.
    Tai T, Yamashita K, Ito S, Kobata A, J Biol Chem 252, 6687–94 (1977).Google Scholar
  60. 60.
    Yamashita K, Tachibana Y, Kobata A, J Biol Chem 253, 3862–9 (1978).Google Scholar
  61. 61.
    Hunt LA, Etchison JR, Summers DF, Proc Natl Acad Sci USA 75, 754–8 (1978).Google Scholar
  62. 62.
    Robbins PW, Hubbard SC, Turco SJ, Wirth DF, Cell 12, 893–900 (1977).Google Scholar
  63. 63.
    Tabas I, Schlesinger S, Kornfeld S, J Biol Chem 253, 716–22 (1978).Google Scholar
  64. 64.
    Kornfeld S, Li E, Tabas I, J Biol Chem 253, 7771–8 (1978).Google Scholar
  65. 65.
    Hubbard SC, Robbins PW, J Biol Chem 254, 4568–76 (1979).Google Scholar
  66. 66.
    Narasimhan S, Tsai D, Schachter H, Fed Proc 40, 1597 (1981).Google Scholar
  67. 67.
    Schachter H, In Glycoproteins, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier, NY, 1995) pp. 153–99.Google Scholar
  68. 68.
    Yamashita K, Mizuochi T, Kobata A, Methods Enzymol 83, 105–26 (1982).Google Scholar
  69. 69.
    Kobata A, Yamashita K, Takasaki S, Methods Enzymol 138, 84–94 (1987).Google Scholar
  70. 70.
    Kobata A, Methods Enzymol 230, 200–8 (1994).Google Scholar
  71. 71.
    Iijima Y, Egami F, J Biochem (Tokyo) 70, 75–8 (1971).Google Scholar
  72. 72.
    Nishigaki M, Muramatsu T, Kobata A, Maeyama K, J Biochem (Tokyo) 75, 509–17 (1974).Google Scholar
  73. 73.
    Kochibe N, J Biochem (Tokyo) 74, 1141–9 (1973).Google Scholar
  74. 74.
    Ogata-AM, Muramatsu T, Kobata A, Arch Biochem Biophys 181, 353–8 (1977).Google Scholar
  75. 75.
    Kobata A, Takasaki S, In Glycobiology: A practical approach, edited by Fukuda M, Kobata A, (IRL Press, Oxford University Press, Oxford, 1992) pp. 165–85.Google Scholar
  76. 76.
    Ogata S, Muramatsu T, Kobata A, J Biochem (Tokyo) 78, 687–96 (1975).Google Scholar
  77. 77.
    Krusius T, Finne J, Rauvala H, FEBS Lett 71, 117–20 (1976).Google Scholar
  78. 78.
    Ogata S, Muramatsu T, Kobata A, Nature 259, 580–2 (1976).Google Scholar
  79. 79.
    Kobata A, Endo T, J Chromatography 597, 111–22 (1992).Google Scholar
  80. 80.
    Kobata A, Yamashita K, In Glycobiology: A practical approach, edited by Fukuda M, Kobata A, (IRL Press, Oxford University Press, Oxford, 1992), pp. 103–25.Google Scholar
  81. 81.
    Mizuochi T, Kobata A, Biochem Biophys Res Commun 97, 772–8 (1980).Google Scholar
  82. 82.
    Bellisario R, Carlsen RB, Bahl OP, J Biol Chem 248, 6796–809 (1973).Google Scholar
  83. 83.
    Carlsen RB, Bahl OP, Swaminathan N, J Biol Chem 248, 6810–25 (1973).Google Scholar
  84. 84.
    Endo Y, Yamashita K, Tachibana Y, Tojo S, Kobata A, J Biochem (Tokyo) 85, 669–79 (1979).Google Scholar
  85. 85.
    Kessler MJ, Reddy MS, Shah RH, Bahl OP, J Biol Chem 254, 7901–8 (1979).Google Scholar
  86. 86.
    Kobata A, Takeuchi M, Biochim Biophys Acta 1455, 315–26 (1999).Google Scholar
  87. 87.
    Reitman ML, Kornfeld S, J Biol Chem 256, 11977–80 (1981).Google Scholar
  88. 88.
    Baranski TJ, Faust PL, Kornfeld S, Cell 63, 281–91 (1990).Google Scholar
  89. 89.
    Yamashita K, Tachibana Y, Shichi H, Kobata A, J Biochem (Tokyo) 93, 135–47 (1983).Google Scholar
  90. 90.
    Yamashita K, Hitoi A, Matsuda Y, Tsuji A, Katunuma N, Kobata A, J Biol Chem 258, 1098–107 (1983).Google Scholar
  91. 91.
    Yamashita K, Hitoi A, Tateishi N, Higashi T, Sakamoto Y, Kobata A, Arch Biochem Biophys 225, 993–6 (1983).Google Scholar
  92. 92.
    Yamashita K, Hitoi A, Matsuda Y, Miura T, Katunuma N, Kobata A, J Biochem (Tokyo) 99, 55–62 (1986).Google Scholar
  93. 93.
    Yamashita K, Hitoi A, Taniguchi N, Yokosawa N, Tsukada Y, Kobata A, Cancer Res 43, 5059–63 (1983).Google Scholar
  94. 94.
    Yamashita K, Totani K, Iwaki Y, Takamizawa I, Tateishi N, Higashi T, Sakamoto Y, Kobata A, J Biochem (Tokyo) 105, 728–35 (1989).Google Scholar
  95. 95.
    Miyoshi E, Nishikawa A, Ihara Y, Gu J, Sugiyama T, Hayashi N, Fusamoto T, Kamada T, Taniguchi N, Cancer Res 53, 3899–902 (1993).Google Scholar
  96. 96.
    Liang CJ, Yamashita K, Muellenberg CG, Shichi H, Kobata A, J Biol Chem 254, 6141–8 (1979).Google Scholar
  97. 97.
    Duffin KL, Lange GW, Welply JK, Florman R, O'Brien PJ, Dell A, Reason AJ, Morris HR, Fliesler J, Glycobiology 3, 365–80 (1993).Google Scholar
  98. 98.
    Fujita S, Endo T, Ju J, Kean EL, Kobata A, Glycobiology 4, 633–40 (1994).Google Scholar
  99. 99.
    Endo T, Niu N, Organisciak DT, Sato Y, Kobata A, Kean EL, Exp Eye Res 63, 395–405 (1996).Google Scholar
  100. 100.
    Zhang Y, Iwasa T, Tsuda M, Kobata A, Takasaki S, Glycobiology 7, 1153–8 (1997).Google Scholar
  101. 101.
    Kagawa Y, Takasaki S, Utsumi J, Hoshi K, Shimizu H, Kochibe N, Kobata A, J Biol Chem 263, 17508–15 (1988).Google Scholar
  102. 102.
    Meezan E, Wu HC, Black PH, Robbins PW, Biochemistry 8, 2518–24 (1969).Google Scholar
  103. 103.
    Buck CA, Glick MC, Warren L, Biochemistry 9, 4567–76 (1970).Google Scholar
  104. 104.
    Buck CA, Glick MC, Warren L, Science 172, 169–71 (1971).Google Scholar
  105. 105.
    Smets LA, Van Beek WP, Van Nie R, Cancer Lett 3, 133–8 (1977).Google Scholar
  106. 106.
    Warren L, Critchley D, Macpherson I, Nature 235, 275–8 (1972).Google Scholar
  107. 107.
    Von Nest G, Grimes WJ, Biochemistry 16, 2902–8 (1977).Google Scholar
  108. 108.
    Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A, J Biol Chem 259, 10834–40 (1984).Google Scholar
  109. 109.
    Pierce M, Arango J, J Biol Chem 26l, 10772–7 (1986).Google Scholar
  110. 110.
    Yamashita K, Tachibana Y, Ohkura T, Kobata A, J Biol Chem 260, 3963–9 (1985).Google Scholar
  111. 111.
    Van den Eijnden DH, Schiphorst WECM, In Glycoconjugates, edited by Chester MA, Heinegard D, Lundblad A, Svensson S, (Rahms i Lund, 1983), pp. 766–7.Google Scholar
  112. 112.
    Kobata A, In Glycoproteins and Disease, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier Science BV, Amsterdam, 1996) pp. 211–26.Google Scholar
  113. 113.
    Pierce JG, Parson TF, Annu Rev Biochem 50, 465–95 (1981).Google Scholar
  114. 114.
    Mizuochi T, Nishimura R, Derappe C, Taniguchi T, Hamamoto T, Mochizuki M, Kobata A, J Biol Chem 258, 14126–9 (1983).Google Scholar
  115. 115.
    Mizuochi T, Nishimura R, Taniguchi T, Utsunomiya T, Mochizuki M, Derappe C, Kobata A, Jpn J Cancer Res 76, 752–9 (1985).Google Scholar
  116. 116.
    Endo T, Nishimura R, Kawano M, Mochizuki M, Kobata A, Cancer Res 47, 5242–5 (1987).Google Scholar
  117. 117.
    Endo T, Iino K, Nozawa S, Iizuka R, Kobata A, Jpn J Cancer Res 79, 160–4 (1988).Google Scholar
  118. 118.
    Nishimura R, Kobata A, In Glycoproteins and Disease, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier Science BV, Amsterdam, 1996) pp. 185–95.Google Scholar
  119. 119.
    Yamashita K, Kobata A, In Glycoproteins and Disease, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier Science, BV Amsterdam, 1996) pp. 229–39.Google Scholar
  120. 120.
    Mizuochi T, Taniguchi T, Shimizu A, Kobata A, J Immunol 129, 2016–20 (1982).Google Scholar
  121. 121.
    Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A, Nature 316, 452–7 (1985).Google Scholar
  122. 122.
    Kobata A, Glycobiology 1, 5–8 (1990).Google Scholar
  123. 123.
    Endo T, Furukawa K, In Glycoproteins and Disease, edited by Montreuil J, Vliegenthart JFG, Schachter H, (Elsevier Science, BV Amsterdam, 1996) pp. 277–89.Google Scholar
  124. 124.
    Cervos-Navarro J, Urich H, In Metabolic & Degenerative Diseases of the Central Nervous System (Academic Press, San Diego, 1995) pp. 221–395.Google Scholar
  125. 125.
    Yamashita K, Totani K, Kuroki M, Matsuoka Y, Ueda I, Kobata A, Cancer Res 47, 3451–9 (1987).Google Scholar
  126. 126.
    Fukuda MN, Glycobiology 1, 9–15 (1990).Google Scholar
  127. 127.
    Yamashita K, Ohkura T, Ideo H, Ohno K, Kanai M, J Biochem (Tokyo) 114, 766–9 (1993).Google Scholar
  128. 128.
    Piller F, Deist FL, Weinberg KI, Parkman R, Fukuda M, J Exp Med 173, 1501–6 (1991).Google Scholar
  129. 129.
    Frydman M, Edzioni A, Eidlitz-Markus T, Avidor I, Varsano I, Shechter Y, Orlin JB, Gershoni-Brauch R, Am J Med Genet 44, 297–302 (1992).Google Scholar
  130. 130.
    Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, Gershoni-Baruch R, N Engl J Med 327, 1789–92 (1992).Google Scholar
  131. 131.
    Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL, J Biol Chem 266, 14869–72 (1991).Google Scholar
  132. 132.
    Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R, Biochem Biophys Res Commun 179, 713–9 (1991).Google Scholar
  133. 133.
    Imai Y, Lasky LA, Rosen SD, Nature 36l, 555–7 (1993).Google Scholar
  134. 134.
    Tsuboi S, Isogai Y, Hoda N, King JK, Hindsgaul O, Fukuda M, J Biol Chem 271, 27213–6 (1996).Google Scholar
  135. 135.
    Imai Y, Lasky LA, Rosen SD, Glycobiology 2, 373–81 (1992).Google Scholar
  136. 136.
    Sturla L, Etzioni A, Bisso A, Zanardi D, De Flora G, Silengo L, De Flora A, Tonetti M, FEBS Lett 429, 274–8 (1998).Google Scholar
  137. 137.
    Lübke T, Marquardt T, von Figura K, Korner C, J Biol Chem 274, 25986–9 (1999).Google Scholar
  138. 138.
    Hase S, Kawabata S, Nishimura H, Takeya H, Suevoshi T, Miyata T, Iwanaga S, Takao T, Shimonishi Y, Ikenaka T, J Biochem (Tokyo) 104, 867–8 (1988).Google Scholar
  139. 139.
    Kentzer EJ, Buko A, Menon G, Sarin VK, Biochem Biophys Res Commun 171, 401–6 (1990).Google Scholar
  140. 140.
    Hart GW, Greis KD, Dong L-YD, Blomberg MA, Chou T-Y, Jiang M-S, Roquemore EP, Snow DM, Kreppel LK, Cole RC, Hayes BK, Pure & Appl Chem 67, 1637–45 (1995).Google Scholar
  141. 141.
    Parekh R, Roitt I, Isenberg D, J Exp Med 167, 1731–6 (1988).Google Scholar
  142. 142.
    Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Shiota M, Furukawa K, Ito K, Kobata A, J Immunol 151, 1137–46 (1993).Google Scholar
  143. 143.
    Tsuchiya N, Endo T, Matsuta K, Yoshinoya S, Aikawa T, Kosuge E, Takeuchi F, Miyamoto T, Kobata A, J Rheumatol 16, 285–90 (1989).Google Scholar
  144. 144.
    Glenner GC, Wong CW, Biochem Biophys Res Commun 120, 885–90 (1984).Google Scholar
  145. 145.
    Kang J, Lemaire H-G, Unterbeck A, Salbaum J, Masters CL, Greschik K-H, Multhaup G, Beyreuther K, Muller-Hill B, Nature 325, 733–6 (1987).Google Scholar
  146. 146.
    Ervasti JM, Campbell KP, Cell 66, 1121–31 (1991).Google Scholar
  147. 147.
    Ervasti JM, Campbell KP, J Cell Biol 122, 809–23 (1993).Google Scholar
  148. 148.
    Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP, Nature 355, 696–702 (1992).Google Scholar
  149. 149.
    Leivo I, Engvall E, Proc Natl Acad Sci USA 85, 1544–8 (1988).Google Scholar
  150. 150.
    Yamada H, Shimizu T, Tanaka T, Campbell KP, Matsumura K, FEBS Lett 352, 49–53 (1994).Google Scholar
  151. 151.
    Obremski VJ, Bunge MB, Dev Biol 168, 124–37 (1995).Google Scholar
  152. 152.
    Yamada H, Chiba A, Endo T, Kobata A, Anderson LVB, Hori H, Fukuta-Ohi H, Kanazawa I, Campbell KP, Shimizu T, Matsumura K, J Neurochem 66, 1518–24 (1996).Google Scholar
  153. 153.
    Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T, J Biol Chem 272, 2156–62 (1997).Google Scholar
  154. 154.
    Patel T, Bruce J, Merry A, Bigge C, Wormald M, Jaques A, Parekh R, Biochemistry 32, 679–93 (1993).Google Scholar
  155. 155.
    Kadowaki S, Yamamoto K, Fujisaki M, Tochikura T, J Biochem (Tokyo) 110, 17–21 (1991).Google Scholar
  156. 156.
    Takahashi N, Biochem Biophys Res Commun 76, 1194–201 (1977).Google Scholar
  157. 157.
    Hase S, Ikenaka T, Matsushima Y, Biochem Biophys Res Commun 85, 257–63 (1978).Google Scholar
  158. 158.
    Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB, Anal Biochem 230, 229–38 (1995).Google Scholar
  159. 159.
    Hirabayashi J, Kasai K, Glycoconjugate J 18, S33 (1999).Google Scholar
  160. 160.
    Herman T, Horovitz HR, Proc Natl Acad Sci USA 96, 974–9 (1999).Google Scholar
  161. 161.
    Schachner M, Martini R, Trends Neurosci 18, 183–91 (1995).Google Scholar
  162. 162.
    Rutishauser M, Landmesser L, Trends Neurosci 19, 422–7 (1996).Google Scholar
  163. 163.
    Sato Y, Kimura M, Endo T, Glycoconjugate J 15, 1133–40 (1998).Google Scholar
  164. 164.
    Sato Y, Kimura M, Yasuda C, Nakano Y, Tomita M, Kobata A, Endo T, Glycobiology 9, 655–60 (1999).Google Scholar
  165. 165.
    Trapp BD, Mclntyre LJ, Quarles RH, Strenberger NH, Webster HdeF, Proc Natl Acad Sci USA 76, 3552–6 (1979).Google Scholar
  166. 166.
    Ishaque A, Room MW, Szymaska I, Kowalski S, Eylar EH, Can J Biochem 209, 483–501 (1980).Google Scholar
  167. 167.
    Uyemura K, Kitamura K, Miura M, In Myelin: Biology and Chemistry, edited by Martenson E, (CRC Press, Boca Raton, FL, 1992) pp. 481–508.Google Scholar
  168. 168.
    Yazaki T, Miura M, Asou H, Kitamura K, Toya S, Uyemura K, FEBS Lett 307, 361–6 (1992).Google Scholar
  169. 169.
    Giese KP, Martini R, Lemke G, Soriano P, Schachner M, Cell 71, 565–76 (1992).Google Scholar
  170. 170.
    Krusius T, Finne J, Margolis RK, Margolis RU, J Biol Chem 261, 8237–42 (1986).Google Scholar
  171. 171.
    Yuen CT, Chai W, Loveless RW, Lawson AM, Margolis RU, Feizi T, J Biol Chem 272, 8924–31 (1997).Google Scholar
  172. 172.
    Smalheiser NR, Haslam SM, Sutton-Smith M, Morris HR, Dell A, J Biol Chem 273, 23698–703 (1998).Google Scholar
  173. 173.
    Anet EFLT, Reynolds TM, Nature 174, 930 (1956).Google Scholar
  174. 174.
    Moloney DJ, Panin VM, Johnston SH, Chen I, Shao L, Wilson R, Wang R, Stanley P, Irvine KD, Haltowanger RS, Vogt TF Nature 406, 369–75 (2000).Google Scholar
  175. 175.
    Bruckner K, Perez L, Clausen H, Cohen S, Nature 406, 411–15 (2000).Google Scholar
  176. 176.
    Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G, Nature Cell Biol 2, 515–20 (2000).Google Scholar
  177. 177.
    Munro S, Freeman M, Curr Biol 10, 813–20 (2000).Google Scholar
  178. 178.
    Takahashi S, Sasaki T, Manya H, Chiba Y, Yoshida A, Mizuno M, Ishida H, Ito F, Inazu T, Kotani N, Takasaki S, Takeuchi M, Endo T, Glycobiology 11, 37–45 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Akira Kobata
    • 1
  1. 1.Tokyo Metropolitan Institute of GerontologyJapan

Personalised recommendations