Molecular and Cellular Biochemistry

, Volume 221, Issue 1–2, pp 127–132 | Cite as

Induction of cardiac FABP gene expression by long chain fatty acids in cultured rat muscle cells

  • Weihua Chang
  • Jutta Rickers-Haunerland
  • Norbert H. Haunerland
Article

Abstract

The induction of cardiac FABP expression by long‐chain fatty acids was measured in cultured rat myoblasts, myotubes and adult cardiomyocytes. With quantitative RT‐PCR techniques, the primary transcription product of the FABP gene and the mature mRNA were measured. Incubations of 30 min resulted in a larger than 2‐fold increase of the primary transcript in all cells, and FABP mRNA more than doubled in myoblasts and cardiomyocytes after 10 h of fatty acid exposure. The results demonstrate that long chain fatty acids induce the expression of the cardiac FABP gene in muscle cells and their undifferentiated precursors at the level of transcription initiation, suggesting that all factors involved in fatty acid dependent gene induction are already present in myoblasts. Thus, myoblast cell lines should be useful for the characterization of fatty acid response elements that control the expression of the FABP gene.

cardiac FABP myoblast myotube cardiomyocyte cell culture fatty acid gene regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vogel Hertzel A, Bernlohr DA: The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11: 175–180, 2000CrossRefGoogle Scholar
  2. 2.
    Glatz JF, van Breda E, van der Vusse GJ: Intracellular transport of fatty acids in muscle. Role of cytoplasmic fatty acid-binding protein. Adv Exp Med Biol 441: 207–218, 1998CrossRefPubMedGoogle Scholar
  3. 3.
    Schaap FG, van der Vusse GJ, Glatz JF: Fatty acid-binding proteins in the heart. Mol Cell Biochem 180: 43–51, 1998CrossRefPubMedGoogle Scholar
  4. 4.
    Haunerland NH: Fatty acid binding proteins in locust and mammalian muscle. Comparison of structure, function, and regulation. Comp Biochem Physiol 109B: 199–208, 1994Google Scholar
  5. 5.
    van Breda E, Keizer HA, Vork MM, Surtel DAM, de Jong YF, van der Vusse GJK, Glatz JFC: Modulation of fatty-acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflügers Arch 421: 274–279, 1992CrossRefPubMedGoogle Scholar
  6. 6.
    van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, van der Vusse GJ, van Bilsen M: Long-chain fatty acidinduced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41: 41–47, 2000PubMedGoogle Scholar
  7. 7.
    Kempen KP, Saris WH, Kuipers H, Glatz JF, van Der Vusse GJ: Skeletal muscle metabolic characteristics before and after energy restriction in human obesity: Fibre type, enzymatic beta-oxidative capacity and fatty acid-binding protein content. Eur J Clin Invest 28: 1030–1037, 1998CrossRefPubMedGoogle Scholar
  8. 8.
    Frohnert BI, Hui TY, Bernlohr DA: Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem 274: 3970–3977, 1999CrossRefPubMedGoogle Scholar
  9. 9.
    Wolfrum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Börchers T, Spener F: Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res 40: 708–714, 1999PubMedGoogle Scholar
  10. 10.
    Rump R, Buhlmann C, Börchers T, Spener F: Differentiation-dependent expression of heart type fatty acid-binding protein in C2C12 muscle cells. Eur J Cell Biol 69: 135–142, 1996PubMedGoogle Scholar
  11. 11.
    Prinsen CF, Veerkamp JH: Transfection of L6 myoblasts with adipocyte fatty acid-binding protein cDNA does not affect fatty acid uptake but disturbs lipid metabolism and fusion. Biochem J 329: 265–273, 1998CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    van Bilsen M, de Vries JE, van der Vusse GJ: Long-term effects of fatty acids on cell viability and gene expression of neonatal cardiac myocytes. Prostaglandins Leukotrines Essent Fatty Acids 57: 39–45, 1997CrossRefGoogle Scholar
  13. 13.
    Rodriguez B, Severson D: Preparation of cardiomyocytes. In: J.H. McNeill (ed). Biochemical Techniques in the Heart. CRC Press, Boca Raton, 1997, pp 101–115Google Scholar
  14. 14.
    Yaffe D: Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61: 477–483, 1968CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elferink CJ, Reiners JJ Jr: Quantitative RT-PCR on CYP1A1 heterogeneous nuclear RNA: A surrogate for the in vitro transcription runon assay. BioTechniques 20: 470–477, 1996PubMedGoogle Scholar
  16. 16.
    Zhang J, Haunerland NH: Transcriptional regulation of FABP expression in flight muscle of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 28: 683–691, 1998CrossRefGoogle Scholar
  17. 17.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94: 4318–4323, 1997CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, van der Vusse GJ, van Bilsen M: Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 8: 1384–1394, 1997Google Scholar
  19. 19.
    Neville C, Rosenthal N, McGrew M, Bogdanova N, Hauschka S: Skeletal muscle cultures. Meth Cell Biol 52: 85–116, 1997CrossRefGoogle Scholar
  20. 20.
    van Bilsen M, van der Vusse GJ, Reneman RS: Transcriptional regulation of metabolic processes: Implications for cardiac metabolism. Pflügers Arch 437: 2–14, 1998CrossRefPubMedGoogle Scholar
  21. 21.
    Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA: Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci USA 90: 1440–1444, 1993CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brandt JM, Djouadi F, Kelly DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273: 23786–23792, 1998CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang J, Rickers-Haunerland J, Dawe I, Haunerland, NH: Structure and chromosomal location of the rat gene encoding the heart fatty acidbinding protein. Eur J Biochem 266: 347–351, 1999CrossRefPubMedGoogle Scholar
  24. 24.
    Treuner M, Kozak CA, Gallahan D, Grosse R, Müller T: Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Gene 147: 237–242, 1994CrossRefPubMedGoogle Scholar
  25. 25.
    Phelan C, Morgan K, Baird S, Korneluk K, Narod S, Pollak M: The human mammary-derived growth inhibitor (MDGI) gene: Genomic structure and mutation analysis in human breast tumors. Genomics 34: 63–68, 1996CrossRefPubMedGoogle Scholar
  26. 26.
    Gerbens F, Rettenberger G, Lenstra JA, Veerkamp JH, te Pas MF: Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm Genome 8: 328–332, 1997CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Weihua Chang
    • 1
  • Jutta Rickers-Haunerland
    • 1
  • Norbert H. Haunerland
    • 1
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations