Journal of Neurocytology

, Volume 29, Issue 10, pp 719–728 | Cite as

Alpha 1E subunit of the R-type calcium channel is associated with myelinogenesis

  • Suzanne Chen
  • Yu Qin Ren
  • Renjie Bing
  • Dean E. Hillman


During myelinogenesis, we found an exceedingly strong, transient expression of the α1E gene for the R-type voltage-gated calcium channel in CNS white matter. This immunoreactivity appeared in glial cells along specific pathways of the brainstem, cerebellum, and telencephalon. The reactivity followed a wave that progressed from the brainstem at P5, to the cerebellar peduncles by P8, the arbor vitae by P14, and the granular layer by P17. The reactivity-peaked about 3–4 days later and decreased gradually to become negligible in all areas before adulthood. Ultrastructural analysis confirmed that α1E immunoreactivity was located in oligodendroglial somata, their projections, paranodal wraps and loose myelin sheaths. There was a distinct association of the channel protein reactivity on oligodendroglial membranes in contact with the axon. We propose that glial projections, contacting axons, sense axonal firing through small K+ currents and open the high voltage R-type calcium channels to signal myelination.


White Matter Calcium Channel Glial Cell Transient Expression Myelin Sheath 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AHLIJANIAN, M. K., STRIESSNIG, J. & CATTERALL, W. A. (1991) Phosphorylation of an alpha 1-like subunit of an omega-conotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase. Journal of Biological Chemistry 266, 20192-20197.Google Scholar
  2. AKOPIAN, G., KRESSIN, K., DEROUICHE, A. & STEINHAUSER, C. (1996) Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents. Glia 17, 181-194.Google Scholar
  3. BORGES, K., WOLSWIJK, G., OHLEMEYER, C. & KETTENMANN, H. (1995) Adult rat optic nerve oligodendrocyte progenitor cells express a distinct repertoire of voltage-and ligand-gated ion channels. Journal of Neuroscience Research 40, 591-605.Google Scholar
  4. BOURINET, E., ZAMPONI, G. W., STEA, A., SOONG, T. W., LEWIS, B. A. & JONES, L. P. et al. (1996) The alpha 1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. Journal of Neuroscience 16, 4983-4993.Google Scholar
  5. BROWN, C. M., BEST, P. M. & MEISAMI, E. (2000) mRNA expression for low-voltage-activated calcium channels in developing rat cortex, cerebellum and olfactory bulbs. Society for Neuroscience, abstract, 30, 161.Google Scholar
  6. CATTERALL, W. A. (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium, 24, 307-323.Google Scholar
  7. CHING, W., ZANAZZI, G., LEVINSON, S. R. & SALZER, J. L. (1999) Clustering of neuronal sodium channels requires contact with myelinating schwann cells. Journal of Neurocytology, 28, 295-301.Google Scholar
  8. DAY, N. C., SHAW, P. J., MCCORMACK, A. L., CRAIG, P. J., SMITH, W., BEATTIE, R. et al. (1996) Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience, 71, 1013-1024.Google Scholar
  9. GERMAN, D. C., NG., M. C., LIANG, C. L., MCMAHON, A. & IACOPINO, A. M. (1997) Calbindin-D28k in nerve cell nuclei. Neuroscience, 81, 735-743.Google Scholar
  10. LUX, H. D., HEINEMANN, U. & DIETZEL, I. (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Advances in Neurology, 44, 619-639.Google Scholar
  11. MACVICAR, B. A. (1984) Voltage-dependent calcium channels in glial cells. Science, 226, 1345-1347.Google Scholar
  12. MARTINI, R. & SCHACHNER, M. (1997) Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia, 19, 298-310.Google Scholar
  13. NEWCOMB, R., SZOKE, B., PALMA, A., WANG, G., CHEN, X., HOPKINS, W. et al. (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry, 37, 15353-15362.Google Scholar
  14. OH, Y. (1997) Ion channels in neuroglial cells. Kao-Hsiung i Hsueh Ko Hsueh Tsa Chih [Kaohsiung Journal of Medical Sciences], 13, 1-9.Google Scholar
  15. PEREZ-REYES, E., CRIBBS, L. L., DAUD, A., LACERDA, A. E., BARCLAY, J., WILLIAMSON, M. P. et al. (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel [see comments]. Nature, 391, 896-900.Google Scholar
  16. PURO, D. G., HWANG, J. J., KWON, O. J. & CHIN, H. (1996) Characterization of an L-type calcium channel expressed by human retinal Muller (glial) cells. Brain Research. Molecular Brain Research, 37, 41-48.Google Scholar
  17. RACAY, P. & LEHOTSKY, J. (1996) Intracellular and molecular aspects of Ca(2+)-mediated signal transduction in neuronal cells. General Physiology & Biophysics, 15, 273-289.Google Scholar
  18. RANDALL, A. D. & TSIEN, R. W. (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology, 36, 879-893.Google Scholar
  19. RASBAND, M. N., TRIMMER, J. S., PELES, E., LEVINSON, S. R. & SHRAGER, P. (1999) K+ channel distribution and clustering in developing and hypomyelinated axons of the optic nerve. Journal of Neurocytology, 28, 319-331.Google Scholar
  20. RASBAND, M. N., TRIMMER, J. S., SCHWARZ, T. L., LEVINSON, S. R., ELLISMAN, M. H., SCHACHNER, M. et al. (1998) Potassium channel distribution, clustering, and function in remyelinating rat axons. Journal of Neuroscience, 18, 36-47.Google Scholar
  21. ROBITAILLE, R., BOURQUE, M. J. & VANDAELE, S. (1996) Localization of L-type Ca2+ channels at perisynaptic glial cells of the frog neuromuscular junction. Journal of Neuroscience, 16, 148-158.Google Scholar
  22. ROSENBLUTH, J. (1999) A brief history of myelinated nerve fibers: one hundred and fifty years of controversy. Journal of Neurocytology, 28, 251-262.Google Scholar
  23. SAKAGAMI, H. & KONDO, H. (1996) Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the mature and developing rat retina. Brain Research, 719, 154-160.Google Scholar
  24. SCHERER, S. S. (1997) Molecular genetics of demyelination: New wrinkles on an old membrane. Neuron, 18, 13-16.Google Scholar
  25. SOONG, T. W., STEA, A., HODSON, C. D., DUBEL, S. J., VINCENT, S. R. & SNUTCH, T. P. (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science, 260, 1133-1136.Google Scholar
  26. TALLEY, E. M., CRIBBS, L. L., LEE, J. H., DAUD, A., PEREZ-REYES, E. & BAYLISS, D. A. (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. Journal of Neuroscience, 19, 1895-1911.Google Scholar
  27. TOTTENE, A., VOLSEN, S. & PIETROBON, D. (2000) alpha( 1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. Journal of Neuroscience, 20, 171-178.Google Scholar
  28. VABNICK, I., MESSING, A., CHIU, S. Y., LEVINSON, S. R., SCHACHNER, M., RODER, J. et al. (1997) Sodium channel distribution in axons of hypomyelinated and MAG null mutant mice. Journal of Neuroscience Research, 50, 321-336.Google Scholar
  29. VABNICK, I. & SHRAGER, P. (1998) Ion channel redistribution and function during development of the myelinated axon. Journal of Neurobiology, 37, 80-96.Google Scholar
  30. VABNICK, I., TRIMMER, J. S., SCHWARZ, T. L., LEVINSON, S. R., RISAL, D. & SHRAGER, P. (1999) Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. Journal of Neuroscience, 19, 747-758.Google Scholar
  31. VERKHRATSKY, A., ORKAND, R. K. & KETTENMANN, H. (1998) Glial calcium: Homeostasis and signaling function. Physiological Reviews, 78, 99-141.Google Scholar
  32. VOLSEN, S. G., DAY, N. C., MCCORMACK, A. L., SMITH, W., CRAIG, P. J., BEATTIE, R. et al. (1995) The expression of neuronal voltage-dependent calcium channels in human cerebellum. Brain Research. Molecular Brain Research, 34, 271-282.Google Scholar
  33. WALZ, W. (1989) Role of glial cells in the regulation of the brain ion microenvironment. Progress in Neurobiology, 33, 309-333.Google Scholar
  34. WESTENBROEK, R. E., AHLIJANIAN, M. K. & CATTERALL, W. A. (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347, 281-284.Google Scholar
  35. WESTENBROEK, R. E., BAUSCH, S. B., LIN, R. C., FRANCK, J. E., NOEBELS, J. L. & CATTERALL, W. A. (1998) Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. Journal of Neuroscience, 18, 2321-2334.Google Scholar
  36. WILLIAMS, M. E., WASHBURN, M. S., HANS, M., URRUTIA, A., BRUST, P. F., PRODANOVICH, P. et al. (1999) Structure and functional characterization of a novel human low-voltage activated calcium channel. Journal of Neurochemistry, 72, 791-799.Google Scholar
  37. WILLIAMSON, A. V., COMPSTON, D. A. & RANDALL, A. D. (1997) Analysis of the ion channel complement of the rat oligodendrocyte progenitor in a commonly studied in vitro preparation. European Journal of Neuroscience, 9, 706-720.Google Scholar
  38. WILSON, S. M., TOTH, P. T., OH, S. B., GILLARD, S. E., VOLSEN, S., REN, D. et al. (2000) The status of voltage-dependent calcium channels in α1E knoch-out mice. Journal of Neuroscience, 20, 8566-8577.Google Scholar
  39. YOKOYAMA, C. T., WESTENBROEK, R. E., HELL, J. W., SOONG, T. W., SNUTCH, T. P. & CATTERALL, W. A. (1995) Biochemical properties and subcellular distribution of the neuronal class E calcium channel alpha 1 subunit. Journal of Neuroscience, 15, 6419-6432.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Suzanne Chen
    • 1
  • Yu Qin Ren
    • 1
  • Renjie Bing
    • 1
  • Dean E. Hillman
    • 1
  1. 1.Departments of Otolaryngology and Physiology &Neuroscience, New York University Medical CenterNew YorkUSA

Personalised recommendations