Pharmaceutical Research

, Volume 18, Issue 7, pp 1042–1048

Liposomes Bearing Polyethyleneglycol-Coupled Transferrin with Intracellular Targeting Property to the Solid Tumors In Vivo

  • Osamu Ishida
  • Kazuo Maruyama
  • Hiroyuki Tanahashi
  • Motoharu Iwatsuru
  • Katsunori Sasaki
  • Masazumi Eriguchi
  • Hironobu Yanagie


Purpose. The purpose of this study was to determine the usefulness of transferrin (TF)-pendant-type polyethyleneglycol (PEG)-liposomes (TF-PEG-liposomes), in which TF was covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes as a carrier for in vivo cytoplasmic targeting to tumor cells.

Methods. Small unilamellar TF-PEG-liposomes (100-140 nm in diameter) were prepared from DSPC, CH, DSPE-PEG, and DSPE-PEG-COOH (2:1:0.11:0.021, molar ratio), and were conjugated to TF via the carboxyl residue of DSPE-PEG-COOH. The intracellular targeting ability of TF-PEG-liposomes to tumor cells was examined in vitro and in Colon 26 tumor-bearing mice.

Results. TF-PEG-liposomes, bearing approximately 25 TF molecules per liposome, readily bound to mouse Colon 26 cells in vitro and were internalized by receptor-mediated endocytosis. TF-PEG-liposomes showed a prolonged residence time in the circulation and low RES uptake in Colon 26 tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue. Electron microscopic studies in Colon 26 tumor-bearing mice revealed that the extravasated TF-PEG-liposomes were internalized into tumor cells by receptor-mediated endocytosis.

Conclusion. TF-PEG-liposomes had the capabilities of specific receptor binding and receptor-mediated endocytosis to target cells after extravasation into solid tumors in vivo. Such liposomes should be useful for in vivo cytoplasmic targeting of chemotherapeutic agents or plasmid DNAs to target cells.

liposomes polyethyleneglycol targeting transferrin endocytosis extravasation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Allen. Liposomal drug formulations. Drugs 56: 747-756 (1998).Google Scholar
  2. 2.
    K. Maruyama, O. Ishida, T. Takizawa, and K. Moribe. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 40:89-102 (1999).Google Scholar
  3. 3.
    D. Aragnol and L. D. Leserman. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc. Natl. Acad. Sci. USA 83:2699-2703 (1986).Google Scholar
  4. 4.
    J. T. P. Derksen, H. W. M. Marselt, and G. L. Scherphof. Uptake and processing of immunoglobulin-coated liposomes by subpopulation of rat liver macrophages. Biochim. Biophys. Acta 971:127-136 (1988).Google Scholar
  5. 5.
    K. Maruyama, E. Holmberg, S. J. Kennel, A. Klibanov, V. P. Torchilin, and L. Huang. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J. Pharm. Sci. 79:978-984 (1990).Google Scholar
  6. 6.
    K. Maruyama, T. Takizawa, T. Yuda, S. J. Kennel, L. Huang, and M. Iwatsuru. Targetability of novel immunoliposomes modified with amphipathic polyethyleneglycols conjugated at their distal terminals to monoclonal antibodies. Biochim. Biophys. Acta 1234:74-80 (1995).Google Scholar
  7. 7.
    K. Maruyama, N. Takahashi, T. Tagawa, K. Nagaike, and M. Iwatsuru. Immunoliposomes bearing polyethyleneglycol-coupled Fab' fragment show prolonged circulation time and high extravasation into target solid tumors in vivo. FEBS Lett. 413:177-180 (1997).Google Scholar
  8. 8.
    E. Wagner, D. Curiel, and M. Cotton. Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv. Drug Deliv. Rev. 14:113-135 (1994).Google Scholar
  9. 9.
    H. A. Huebers and C. A. Finch. The physiology of transferrin and transferrin receptors. Physiol. Rev. 67:520-582 (1987).Google Scholar
  10. 10.
    P. Aisen. The transferrin receptor and the release of iron from transferrin. Adv. Exp. Med. Biol. 365:31-40 (1994).Google Scholar
  11. 11.
    F. Szoka and D. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75:4194-4198 (1978).Google Scholar
  12. 12.
    A. Dautry-Varsat, A. Ciechanover, and H. F. Lodish. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 80:2258-2262 (1983).Google Scholar
  13. 13.
    S. K. Huang, K. Hong, K. D. Lee, D. Papahadjopoulos, and D. S. Friend. Light microscopic localization of silver-enhanced liposome-entrapped colloidal gold in mouse tissue. Biochim. Biophys. Acta 1069:117-121 (1991).Google Scholar
  14. 14.
    C. H. Fiske and Y. Subbarow. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375-400 (1925).Google Scholar
  15. 15.
    H. G. Enoch and P. Strittmatter. Formation and properties of 1000-Å-diameter, single-bilayer phospholipid vesicles. Proc. Natl. Acad. Sci. USA 76:145-149 (1979).Google Scholar
  16. 16.
    R. D. Klausner, G. Ashwell, J. Renswoude, J. B. Harford, and K. R. Bridges. Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle. Proc. Natl. Acad. Sci. USA 80:2263-2266 (1983).Google Scholar
  17. 17.
    O. Ishida, K. Maruyama, K. Sasaki, and M. Iwatsuru. Size-dependent extravasation ant interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int. J. Pharm. 190:49-56 (1999).Google Scholar
  18. 18.
    K. Sasaki. Dynamic change of the vascular wall from transmural to intracellular passage of red blood cells observed in splenic regeneration. Acta Anat. 139:315-319 (1990).Google Scholar
  19. 19.
    A. Klibanov, K. Maruyama, A. M. Beckerleg, V. P. Torchilin, and L. Huang. Activity of amphipatihic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim. Biophys. Acta 1062:142-148 (1991).Google Scholar
  20. 20.
    A. Klibanov and L. Huang. Long-circulating liposomes: Development and perspectives. Liposome Res. 2:321-334 (1992).Google Scholar
  21. 21.
    T. Yuda, Y. Pongpaibul, K. Maruyama, and M. Iwatsuru. Activity of amphipathic polyethyleneglycols to prolong the circulation time of liposomes. J. Pharm. Sci. Technol. Jpn. 59:32-42 (1999).Google Scholar
  22. 22.
    R. K. Jain and L. E. Gerlowski. Extravascular transport in normal and tumor tissue. Crit. Rev. Oncol. Hematol. 5:115-170 (1986).Google Scholar
  23. 23.
    Y. Matsumura and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:6387-6392 (1986).Google Scholar
  24. 24.
    S. Unezaki, K. Maruyama, J. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, and S. Tsuchiya. Direct measurement of extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int. J. Pharm. 144:11-17 (1996).Google Scholar
  25. 25.
    D. Liu, A. Mori, and L. Huang. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim. Biophys. Acta 1104:95-101 (1992).Google Scholar
  26. 26.
    P. K. Bali, O. Zak, and P. Aisen. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30:324-328 (1991).Google Scholar
  27. 27.
    D. C. Litzinger and L. Huang. Phosphatidylethanolamine liposomes: Drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1113:201-227 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Osamu Ishida
    • 1
  • Kazuo Maruyama
    • 1
  • Hiroyuki Tanahashi
    • 1
  • Motoharu Iwatsuru
    • 1
  • Katsunori Sasaki
    • 2
  • Masazumi Eriguchi
    • 3
  • Hironobu Yanagie
    • 3
  1. 1.Faculty of Pharmaceutical SciencesTeikyo UniversitySagamiko, Tsukui-gun, KanagawaJapan
  2. 2.Department of AnatomyShinshu University School of MedicineMatsumoto, NaganoJapan
  3. 3.Department of Clinical Oncology, Institute of Medical ScienceUniversity of TokyoShiroganedai, Minato-ku, TokyoJapan

Personalised recommendations