Neurochemical Research

, Volume 26, Issue 5, pp 479–485 | Cite as

L-DOPA Decarboxylase Association with Membranes in Mouse Brain

  • Poulikos Poulikakos
  • Dido Vassilacopoulou
  • Emmanuel G. Fragoulis


This work presents evidence on the association of active DDC molecules with membranes in mammalian brain. L-DOPA decarboxylase (DDC) is generally considered to be a cytosolic enzyme. Membrane-associated DDC was detected by immunoblotting and enzymatic assay experiments. DDC activity and immunoreactivity could be partially extracted from mammalian brain membranes by detergent. Fractionation of membranes by temperature-induced phase separation in Triton X-114, resulted in the recovery of membrane-associated DDC in separation phases where integral and hydrophobic membrane proteins separate. Treatment of membranes with phosphatidylinositol-specific phospholipase C or proteinase K, did not elute membrane-associated DDC activity, suggesting that a population of DDC molecules exist embedded within membranes. The elucidation of the functional significance of the enzyme's association with membranes could provide us with new information leading to the better understanding of the biological pathways that DDC is involved in.

L-DOPA decarboxylase mouse brain membranes Triton X-114 phosphatidylinositol-specific phospholipase C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mappouras, D. G., Stiakakis, J., and Fragoulis, E. G. 1990. Purification and characterization of L-DOPA decarboxylase from human kidney. Mol. and Cel. Biochem. 94:147–156.Google Scholar
  2. 2.
    Nishigaki, I., Ichinose, H., Tamai, K., and Nagatsu, T. 1988. Purification of aromatic L-amino acid decarboxylase from bovine brain with a monoclonal antibody. Biochem. J. 252:331–335.Google Scholar
  3. 3.
    Fragoulis, E. G. and Sekeris, C. E. 1975. Purification and characteristics of Dopa decarboxylase from the integument of Calliphora vicina larvae. Arch. Biochem. Biophys. 168:15–25.Google Scholar
  4. 4.
    Dyck, L. E., Yang, C. R., and Boulton, A. A. 1983. The biosynthesis of p-tyramine, m-tyramine and b-phenylethylamine by rat striatal slices. J. Neurosci. Res. 10:211–220.Google Scholar
  5. 5.
    Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: A modulator of catecholamine transmission in the mammalian central nervous system. J. Neurochem. 55:1827–1837.Google Scholar
  6. 6.
    Rosseti, Z., Krajnc, D., Neff, N. H., and Hajiconstantinou, M. 1989. Modulation of retinal aromatic L-amino acid decarboxylase via a2-adrenoreceptors. J. Neurochem. 52:647–652.Google Scholar
  7. 7.
    Zhu, M. Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1993. Regulation of striatal aromatic L-amino acid decarboxylase: Effects of blockade or activation of dopamine receptors. Eur. J. Pharmacol. 238:157–164.Google Scholar
  8. 8.
    Young, E. A., Neff, N. H., and Hadjiconstantinou, M. 1993. Evidence for cyclic AMP-mediated increase of Aromatic L-amino acid decarboxylase activity in the striatum and midbrain. J. Neurochem. 60:2331–2333.Google Scholar
  9. 9.
    Young, E. A., Neff, N. H., and Hadjiconstantinou, M. 1994. Phorbol ester administration transiently increases aromatic L-amino acid decarboxylase activity of the mouse striatum and midbrain. J. Neurochem. 63:694–697.Google Scholar
  10. 10.
    Mappouras, D. G. and Fragoulis, E. G. 1990. L-DOPA decarboxylase in Ceratitis capitata and human: A comparative study. Comp. Biochem. Physiol. 97:301–306.Google Scholar
  11. 11.
    Borri-Voltatorni, C., Minelli, A., Cirotto, C., Bara, D., and Turano C. 1982. Subunit structure of 3-4-dixydroxyphenylalanine decarboxylase from pig kidney. Arch. Biochem. Biophys. 217:58–64.Google Scholar
  12. 12.
    Maneckjee, R. and Baylin, S. T. 1983. Use of radiolabeled monofluoromethyl-Dopa to define the subunit structure of human L-DOPA decarboxylase. Biochemistry 22:6058–6063.Google Scholar
  13. 13.
    Mappouras, D. G. and Fragoulis, E. G. 1988. Purification and characterization of L-DOPA decarboxylase from the white puparia of Ceratitis capitata. Insect Biochem. 18:369–376.Google Scholar
  14. 14.
    Albert, V. R., Allen, J., and Joh, T. 1987. A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues. J. Biol. Chem. 262:9404–9411.Google Scholar
  15. 15.
    Sims, K. L., Davis, G. A., and Bloom, F. E. 1973. Activities of DOPA and 5-HT decarboxylases in rat brain: Assay characteristics and distribution. J. Neurochem. 20:449–464.Google Scholar
  16. 16.
    Rahman, M. K., Nagatsu, T., and Kato T. 1981. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochem. Pharmacol. 30:645–649.Google Scholar
  17. 17.
    O'Malley, K. L., Harmon, S., Moffat, M., Uhland-Smith, A., and Wong, S. 1995. The human aromatic L-amino acid decarboxylase gene can be alternatively spliced to generate unique protein isoforms. J. Neurochem. 65:2409–2416.Google Scholar
  18. 18.
    Berry, M. D., Juorio, X. M., and Boulton, A. A. 1996. Aromatic L-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochem. Res. 21:1075–1087.Google Scholar
  19. 19.
    Gilbert, J. A., Bates, L. A., and Ames, M. M. 1995. Elevated aromatic L-amino acid decarboxylase in human carcinoid tumors. Biochem. Pharmacol. 50:845–850.Google Scholar
  20. 20.
    Baylin, B. S., Weisburger, W. R., Eggleston, J. C., Mendelsohn, G., Beaven, M. A., Abeloff, M. D., and Ettinger, D. S. 1978. Variable content of histaminase, L-DOPA decarboxylase and calcinitonin in small-cell carcinoma of the lung. N. Engl. J. Med. 299:105–110.Google Scholar
  21. 21.
    Buckland, P. R., Marshall, R., Watkins, P., and McGuffin, P. 1997. Does phenylethylamine have a role in schizophrenia? LSD and PCP up-regulate aromatic L-amino acid decarboxylase levels, Brain Res. Mol. Brain Res. 49:266–270.Google Scholar
  22. 22.
    Ichinose, H., Ohye, T., Fujita, K., Pantucek, F., Lang, K., Riederer, P., and Nagatsu, T. 1994. Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substancia nigra in Parkinson's disease and schizophrenia. J. Neural Transm. Park. Dis. Demnt. Sect. 8:149–158.Google Scholar
  23. 23.
    Sumi-Ichinose, C., Hasegawa, S., Ichinose, H., Sawada, H., Kobayashi, K., Sakai, M., Fujii, T., Nomura, H., Nomura, T., Nagatsu, I., Hagino, Y., Fujita, K., and Nagatsu, T. 1995. Analysis of the alternative promoters that regulate tissue-specific expression of human aromatic L-amino acid decarboxylase. J. Neurochem. 64:514–524.Google Scholar
  24. 24.
    Jahng, J. W., Wessel, T. C., Houpt, T. A., Son, J. H., and Joh, T. H. 1996. Alternative promoters in the rat aromatic L-amino acid decarboxylase gene for neuronal and non-neuronal expression: An in situ hybridization study. J. Neurochem. 66:14–20.Google Scholar
  25. 25.
    Sabban, E. L., Greene, L. A., and Goldstein, M. 1983. Mechanisms of biosynthesis of soluble and membrane-bound forms of dopamine beta-hydroxylase in PC12 pheochromocytoma cells. J. Biol. Chem. 258:7812–7818.Google Scholar
  26. 26.
    Taylor, C. S., Kent, V. M., and Fleming, P. J. 1989. The membrane binding segment of dopamine β-hydroxylase is not an uncleaved signal sequence. J. Biol. Chem. 264:14–16.Google Scholar
  27. 27.
    Kuhn, D. M., Arthur, J. R., and Sankaran, K. 1990. Tyrosine hydroxylasse in secretory granules from bovine adrenal medulla. Evidence for an integral membrane form. Proc. Natl. Acad. Sci. 83:2998–39002.Google Scholar
  28. 28.
    Kelner, K. L., Morita, K., Rossen, J. S., and Pollard, H. B. 1986. Restricted diffusion of tyrosine hydroxylase and phenylethanolamine N-methyltransferase from digitonin-permeabilized adrenal chromaffin cells. Proc. Natl. Acad. Sci. 83:2998–3002.Google Scholar
  29. 29.
    Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analyt. Biochem. 72:248–254.Google Scholar
  30. 30.
    Thomas, C. T. and McNamee, M. G. 1990. Purification of membrane proteins. Meth. In Enzymol. 182:501–521.Google Scholar
  31. 31.
    Ramwani, J. and Mishra, J. 1986. Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. J. Biol. Chem. 261:8894–8898.Google Scholar
  32. 32.
    Laemli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.Google Scholar
  33. 33.
    Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76:4350–4354.Google Scholar
  34. 34.
    Batteiger, B., Newhall, V. W. J., and Jones, R. B. 1982. The use of Tween-20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J. Immunol. Meth. 55:297–307.Google Scholar
  35. 35.
    Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256:1604–1607.Google Scholar
  36. 36.
    Hooper, N. M. and Bashir, A. 1991. Glycosyl-phosphatidylinositol-anchred membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114. Biochem. J. 280:745–751.Google Scholar
  37. 37.
    Tanaka, T., Horio, Y., Taketoshi, M., Imamura, I., Ando-Yamamoto, M., Kangawa, K., Matsuo, H., Kuroda, M., Wada, H. 1989. Molecular cloning and sequencing of a cDNA of rat dopa decarboxylase: Partial amino acid homologies with other enzymes synthesizing catecholamines. Proc. Natl. Acad. Sci. 86:8142–8146.Google Scholar
  38. 38.
    Hjelmeland, L. M. 1990. Solubilization of native membrane proteins. Methods in enzymology 182:253–264.Google Scholar
  39. 39.
    Maher, P. A. and Singer, S. J. 1985. Anomalous interaction of acetylcholine receptor protein with the nonionic detergent Triton X-114. Proc. Natl. Acad. Sci. 82:958–962.Google Scholar
  40. 40.
    Pryde, G. and Philipps, J. 1986. Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Application to subcellular fractions of the adrenal medulla. Bioch. J. 233:525–533.Google Scholar
  41. 41.
    Ehlers, R. W. and Riordan, J. F. 1991. Membrane proteins with soluble counterparts: Role of proteolysis in the release of transmembrane proteins. Biochemistry 30:10065–10073.Google Scholar
  42. 42.
    Rorsman, F., Husebye, E. S., Winqvist, O., Bjork, E., Karlsson, A. A., Kampe, O. 1995. Aromatic-L-amino acid decarboxylase, a pyridoxal phosphate-dependent enzyme, is a β-cell autoantigen. Proc. Natl. Acad. Sci. 92:8626–8629.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Poulikos Poulikakos
    • 1
  • Dido Vassilacopoulou
    • 1
  • Emmanuel G. Fragoulis
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of AthensAthensGreece

Personalised recommendations