Cellular and Molecular Neurobiology

, Volume 21, Issue 3, pp 285–296

Butyrylcholinesterase-Mediated Enhancement of the Enzymatic Activity of Trypsin

  • Sultan Darvesh
  • Rohit Kumar
  • Sheila Roberts
  • Ryan Walsh
  • Earl Martin
Article

Abstract

1. Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BuChE, EC 3.1.1.8) are enzymes that catalyze the hydrolysis of esters of choline.

2. Both AChE and BuChE have been shown to copurify with peptidases.

3. BuChE has also been shown to copurify with other proteins such as transferrin, with which it forms a stable complex. In addition, BuChE is found in association with β-amyloid protein in Alzheimer brain tissues.

4. Since BuChE copurifies with peptidases, we hypothesized that BuChE interacts with these enzymes and that this association had an influence on their catalytic activities. One of the peptidases that copurifies with cholinesterases has specificity similar to trypsin, hence, this enzyme was used as a model to test this hypothesis.

5. Purified BuChE causes a concentration-dependent enhancement of the catalytic activity of trypsin while trypsin does not influence the catalytic activity of BuChE.

6. We suggest that, in addition to its esterase activity, BuChE may assume a regulatory role by interacting with other proteins.

butyrylcholinesterase acetylcholinesterase trypsin Alzheimer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allemand, P., Bon, S., Massoulié, J., and Vigny, M. (1981). The quaternary structure of chicken acetyl-cholinesterase and butyrylcholinesterase: Effect of collagenase and trypsin. J. Neurochem. 36:860-867.Google Scholar
  2. Balasubramanian, A. S., and Bhanumathy, C. D. (1993). Noncholinergic functions of cholinesterases. FASEB J. 7:1354-1358.Google Scholar
  3. Boopathy, A., and Balasubramanian, A. S. (1987). Peptidase activity exhibited by human serum pseudocholinesterase. Eur. J. Biochem. 162:191-197.Google Scholar
  4. Caroll, R. T., and Emmerling, M. R. (1991). Identification of the trypsin-like activity in commercial preparations of eel acetylcholinesterase. Biochem. Biophys. Res. Commun. 181:358-362.Google Scholar
  5. Checler, F., Grassi, J., Masson, P., and Vincent, J.-P. (1990). Monoclonal antibodies allow precipitation of esterasic but not peptidasic activities associated with butyrylcholinesterase. J. Neurochem. 55:750-755.Google Scholar
  6. Checler, F., Grassi, J., Masson, P., and Vincent, J.-P. (1994). Cholinesterases display genuine aryl acylamidase activity but are totally devoid of intrinsic peptidase activities. J. Neurochem. 62:756-763.Google Scholar
  7. Chong, Y. H., and Suh, Y.-H. (1996). Amyloidogenic processing of Alzheimer's amyloid precursor protein in vitro and its modulation by metal ions and tacrine. Life Sci. 59:545-557.Google Scholar
  8. Chubb, I. W., Hodgson, A. J., and White, G. H. (1980). Acetylcholinesterase hydrolyzes substance P. Neuroscience 5:2065-2072.Google Scholar
  9. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184-1190.Google Scholar
  10. Darvesh, S., Kumar, R., and Martin, E. (1999). Enzyme kinetics of butyrylcholinesterase and trypsin: Implications in Alzheimer's disease. Can. J. Neurol. Sci. 26:546-547.Google Scholar
  11. Darvesh, S., MacDonald, S. E., Losier, A. M., Martin, E., Hopkins, D. A., and Armour, J. A. (1998). Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. J. Auton. Nerv. Syst. 71:75-84.Google Scholar
  12. De Serres, M., Sherman, D., Chestnut, W., Merrill, B. M., Viveros, O. H., and Diliberto, E. J., Jr. (1993). Proteolysis at the secretase and amyloidogenic cleavage sites of the beta-amyloid precursor protein by acetylcholineterase and butyrylcholinesterase using model peptide substrates. Cell Mol. Neurobiol. 13:279-287.Google Scholar
  13. Dixon, M., and Webb, E. C. (1979). Enzymes, 3rd edn., Academic Press, New York, pp. 389-391.Google Scholar
  14. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88-95.Google Scholar
  15. Friede, R. L. (1965). Enzyme histochemical studies of senile plaques. J. Neuropathol. Exp. Neurol. 24:477-491.Google Scholar
  16. Gatley, S. J. (1991). Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. biochem. Pharmacol. 41:1249-1254.Google Scholar
  17. Geula, C., Greenberg, D., and Mesulam, M.-M. (1994). Cholinesterase activity in the plaques, tangles and angiopathy of Alzheimer's disease does not emanate from amyloid. Brain Res. 644:327-330.Google Scholar
  18. Geula, C., and Mesulam, M.-M. (1989). Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res. 498:185-189.Google Scholar
  19. Geula, C., and Mesulam, M.-M. (1995). Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2:23-28.Google Scholar
  20. Giacobini, E., Griffini, P. L., Maggi, T., Mascellani, G., and Mandelli, R. (1996). Butyrylcholinesterase: Is it important for cortical acetylcholine regulation? Neurosci. Abs. 22:203.Google Scholar
  21. Gomez-Ramos, P., Bouras, C., and Moran, M. A. (1994). Ultrastructural localization of butyryl-cholinesterase on neurofibrillary degeneration sites in the brains of aged and Alzheimer's disease patients. Brain Res. 640:17-24.Google Scholar
  22. Grunwald, J., Marcus, D., Papier, Y., Raveh, L., Pittel, Z., and Ashani, Y. (1997). Large-scale purification and long-term stability of human butyrylcholinesterase: A potential bioscavenger drug. J. Biochem. Biophys. Methods 34:123-135.Google Scholar
  23. Guillozet, A. L., Smiley, J. F., Mash, D. C., and Mesulam, M.-M. (1997). Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 42:909-918.Google Scholar
  24. Koshikawa, N., Hasegawa, S., Nagashima, Y., Mitsuhashi, K., Tsubota, Y., Miyata, S., Miyagi, Y., Yasumitsu, H., and Miyazaki, K. (1998). Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol. 153:937-944.Google Scholar
  25. Kruger-Thiemer, E. (1969). Generalized kinetics of reversible inhibition and activation. Eur. J. Pharmacol. 6:357-360.Google Scholar
  26. Layer, P. G. (1995). Non-classical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis. Assoc. Disord. 9:29-36.Google Scholar
  27. Li, B., Stribley, J. A., Ticu, A., Xie, W., Schopfer, L. M., Hammond, P., Brimijoin, S., Hinrichs, S. H., and Lockridge, O. (2000). Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 75:1320-1331.Google Scholar
  28. Lockridge, O. (1982). Substance P hydrolysis by human serum cholinesterase. J. Neurochem. 36:106-110.Google Scholar
  29. Lockridge, O., and La Du, B. N. (1982). Loss of the interchain disulfide peptide and dissociation of the tetramer following limited proteolysis of native human serum cholinesterase. J. Biol. Chem. 257:12012-12018.Google Scholar
  30. Lockridge, O., Mottershaw-Jackson, N., Eckerson, H., and La Du, B. N. (1980). Hydrolysis of diacetylmorphine (heroin) by human serum cholinesterase. J. Pharmacol. Exp. Ther. 215:1-8.Google Scholar
  31. Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., Nguyen, H., Brickman, C. M., and LeWitt, P. (1995). Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J. Neurochem. 65:710-724.Google Scholar
  32. Masson, P. (1989). A naturally occurring molecular form of human plasma cholinesterase is an albumin conjugate. Biochim. Biophys. Acta 998:258-266.Google Scholar
  33. Masson, P., Froment, M. T., Fortier, P. L., Visicchio, J. E., Bartels, C. F., and Lockridge, O. (1998). Butyrylcholinesterase-catalyzed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta 1387:41-52.Google Scholar
  34. Meckelein, B., Marshall, D. C. L., Conn, K.-J., Pietopaolo, M., Van Nostrand, W., and Abraham, C. (1998). Identification of a novel serine protease-like molecule in human brain. Brain Res. Mol. Brain Res. 55:181-197.Google Scholar
  35. Mescher, A. L., and Munaim, S. I. (1988). Transferrin and the growth-promoting effect of nerves. Int. Rev. Cytol. 110:1-26.Google Scholar
  36. Mesulam, M.-M., and Geula, C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann. Neurol. 36:722-727.Google Scholar
  37. Minn, A., Schubert, M., Neiss, W. F., and Muller-Hill, B. (1998). Enhanced GFAP expression in astrocytes of transgenic mice expressing the human brain-specific trypsinogen IV. Glia 22:338-347.Google Scholar
  38. Morrison, J. F., and Ebner, K. E. (1971). Studies on galactosyltransferase: Kinetic effects of α-lactalbumin with N-acetylglucosamine and glucose as galactosyl group acceptors. J. Biol. Chem. 246:3992-3998.Google Scholar
  39. Norel, X., Angrisani, M., Labat, C., Gorenne, I., Dulmet, E., Rossi, F., and Brink, C. (1993). Degradation of acetylcholine in human airways: Role of butyrylcholinesterase. Br. J. Pharmacol. 109:914-919.Google Scholar
  40. Nunan, J., and Small, D. H. (2000). Regulation of APP cleavage by alpha-, beta-and gamma-secretases. FEBS Lett. 483:6-10.Google Scholar
  41. Ogawa, K., Yamada, T., Tsujioka, Y., Taguchi, J., Takahashi, M., Tsuboi, Y., Fujino, Y., Nakajima, M., Yamamoto, T., Akatsu, H., Mitsui, S., and Yamaguchi, N. (2000). Localization of a novel type trypsin-like serine protease, neurosin, in brain tissues of Alzheimer's disease and Parkinson's disease. Psychiatry Clin. Neurosci. 54:419-426.Google Scholar
  42. Op den Velde, W., and Stam, F. C. (1976). Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. J. Am. Geriatr. Soc. 24:12-16.Google Scholar
  43. Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of the Alzheimer type. Neuropathol. Appl. Neurobiol. 4:273-277.Google Scholar
  44. Rao, R. V., and Balasubramanian, A. S. (1990). Localization of the peptidase activity of human serum butyrylcholinesterase in a approximately 50-kDa fragment obtained by limited alpha-chymotrypsin digestion. Eur. J. Biochem. 188:637-643.Google Scholar
  45. Rao, R. V., and Balasubramanian, A. S. (1993). The peptidase activity of human serum butyrylcholinesterase: Studies using monoclonal antibodies and characterization of the peptidase. J. Protein Chem. 12:103-110.Google Scholar
  46. Robitzki, A., Doll, F., Richter-Landsberg, C., and Layer, P.G. (2000). Regulation of the rat oligodendroglia cell line OLN-93 by antisense transfection of butyrylcholinesterase. Glia 31:195-205.Google Scholar
  47. Silver, A. (1974). The Biology of Cholinesterases, Elsevier, Amsterdam.Google Scholar
  48. Small, D. H. (1988). Serum acetylcholinesterase possesses trypsin-like and carboxypeptidase B-like activity. Neurosci. Lett. 95:307-312.Google Scholar
  49. Small, D. H. (1990). Non-cholinergic actions of acetylcholinesterases: Proteases regulating cell growth and development? Trends Biochem. Sci. 15:213-216.Google Scholar
  50. Small, D. H., Ismael, Z., and Chubb, I. W. (1987). Acetylcholinesterase exhibits trypsin-like and metalloexopeptidase-like activity in cleaving a model peptide. Neuroscience 21:991-995.Google Scholar
  51. Small, D. H., Michaelson, S., and Sberna, G. (1996). Non-classical actions of cholinesterases: Role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem. Int. 28:453-483.Google Scholar
  52. Small, D. H., Moir, R. D., Fuller, S. J., Michaelson, S., Bush, A. I., Li, Q.-X., Milward, E., Hilbich, E., Weidenmann, A., Beyreuther, K., and Masters, C. L. (1991). A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer's disease. Biochemistry 30:10795-10799.Google Scholar
  53. Tomita, S., Kirino, Y., and Suzuki, T. (1998). A basic amino acid in the cytoplasmic domain of Alzheimer's beta-amyloid precursor protein (APP) is essential for cleavage of APP at the alpha-site. J. Biol. Chem. 273:19304-19310.Google Scholar
  54. Vigny, M., Gisiger, V., and Massoulié, J. (1978). “Nonspecific” cholinesterase and acetylcholinesterase in rat tissues: Molecular forms, structural and catalytic properties, and significance of the two enzyme systems. Proc. Natl. Acad. Sci. USA 75:2588-2592.Google Scholar
  55. Weitnauer, E., Ebert, C., Hucho, F., Robitzki, A., Weise, C., and Layer, P. G. (1999). Butyrylcholinesterase is complexed with transferrin in chicken serum. J. Protein Chem. 18:205-214.Google Scholar
  56. Wright, C. I., Geula, C., and Mesulam, M.-M. (1993). Neuroglial cholinesterases in the normal brain and in Alzheimer's disease: Relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol. 34:373-384.Google Scholar
  57. Yoshida, S., Taniguchi, M., Suemoto, T., Oka, T., He, X., and Shiosaka, S. (1998). cDNA cloning and expression of a novel serine protease, TLSP. Biochim. Biophys. Acta 1399:225-228.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Sultan Darvesh
    • 1
    • 2
    • 3
  • Rohit Kumar
    • 2
  • Sheila Roberts
    • 3
  • Ryan Walsh
    • 3
  • Earl Martin
    • 3
  1. 1.Department of Medicine (Neurology and Geriatric Medicine)HalifaxCanada
  2. 2.Department of Anatomy and NeurobiologyDalhousie UniversityHalifaxCanada
  3. 3.Department of ChemistryMount Saint Vincent UniversityHalifaxCanada

Personalised recommendations