Journal of Clinical Immunology

, Volume 21, Issue 4, pp 258–263 | Cite as

Role of Adhesion Molecules in Activation Signaling in T Lymphocytes

  • Michael L. Dustin


The T cell and antigen-presenting cell communicate to initiate an immune response through formation of an immunological synapse. This specialized cell–cell junction is compartmentalized into adhesion molecule and T cell receptor enriched regions or SMACs. Distinct signals seem to be generated in the T cell receptor and adhesion molecule-dominated regions. This review focuses on how these distinct signaling pathways may be integrated within the T cell to set thresholds for T cell activation, proliferation, and survival.

Adhesion molecules activation signaling T lymphocytes synapses cell growth and survival 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norcross MA: A synaptic basis for T-lymphocyte activation. Ann Immunol (Paris) 135D:113–134, 1984Google Scholar
  2. 2.
    Paul WE, and Seder RA: Lymphocyte responses and cytokines. Cell 76:241–251, 1994Google Scholar
  3. 3.
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A: Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86, 1998Google Scholar
  4. 4.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML: The immunological synapse: A molecular ma-chine controlling T cell activation. Science 285:221–227, 1999Google Scholar
  5. 5.
    Wu¨lfing C, Sjaastad MD, Davis MM: Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci USA 95:6302–6307, 1998Google Scholar
  6. 6.
    Wu¨lfing C, Bauch A Crabtree GR, Davis MM: The vav exchange factor is an essential regulator in actin-dependent receptor trans-location to the lymphocyte-antigen-presenting cell interface. Proc Natl Acad Sci USA 97:10150–10155, 2000Google Scholar
  7. 7.
    Krummel MF, Sjaastad MD, Wulfing C, Davis MM: Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289:1349–1352, 2000Google Scholar
  8. 8.
    Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, Strominger JL: The human natural killer cell immune synapse. Proc Natl Acad Sci USA 96:15062–15067, 1999Google Scholar
  9. 9.
    Johnson KG, Bromley SK, Dustin ML Thomas ML: A supramo-lecular basis for CD45 regulation during T cell activation. Proc Natl Acad Sci USA 97:10138–10143, 2000Google Scholar
  10. 10.
    Avni O, Rao A: T cell differentiation: A mechanistic view. Curr Opin Immunol 12:654–659, 2000Google Scholar
  11. 11.
    Griffiths GM: The cell biology of CTL killing. Curr Opin Immunol 7:343–348, 1995Google Scholar
  12. 12.
    Nobes CD, Hall A: Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filipodia. Cell 81:53–62, 1995Google Scholar
  13. 13.
    Gunzer M, Schafer A, Borgmann S, Grabbe S, Zanker KS, Brocker EB, Kampgen E, Friedl P: Antigen presentation in extracellular matrix: Interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13:323–332, 2000Google Scholar
  14. 14.
    Ebnet K, Kaldjian EP, Anderson AO and Shaw S: Orchestrated information transfer underlying leukocyte endothelial interactions. Annu Rev Immunol 14:155–177, 1996Google Scholar
  15. 15.
    Dustin ML, Allen PM, Shaw AS: Environmental control of immunological synapse formation Trends Immunol 22:192–194, 2001Google Scholar
  16. 16.
    Martz E: LFA-1 and other accessory molecules functioning in adhesions of T and B lymphocytes. Hum Immunol 18:3–37, 1987Google Scholar
  17. 17.
    Rozdzial MM, Malissen B, Finkel TH: Tyrosine-phosphorylated T cell receptor zeta chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 3:623–633, 1995Google Scholar
  18. 18.
    Dustin ML, Cooper JA: The immunological synapse and the actin cytoskeleton: Molecular hardware for T cell signaling. Nature Immunol 1:23–29, 2000Google Scholar
  19. 19.
    Dustin ML, Chan AC: Signaling takes shape in the immune system. Cell 103:283–294, 2000Google Scholar
  20. 20.
    Dustin ML, Springer TA: T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341:619–624, 1989Google Scholar
  21. 21.
    van Kooyk Y, van de Wiel-van Kemenade P, Weder P, Kuijpers TW, Figdor CG: Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature 342:811–813, 1989Google Scholar
  22. 22.
    Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ: Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vavl. Curr Biol 8:1289–1299, 1998Google Scholar
  23. 23.
    Katagiri K, Hattori M, Minato N, Irie S, Takatsu K, Kinashi T: Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol Cell Biol 20:1956–1969, 2000Google Scholar
  24. 24.
    Reedquist KA, Ross E, Koop EA, Wolthuis RM, Zwartkruis FJ, van Kooyk Y, Salmon M, Buckley CD, Bos JL: The small GTPase, Rapl, mediates CD31-induced integrin adhesion. J Cell Biol 148:1151–1158, 2000Google Scholar
  25. 25.
    Suga K, Katagiri K, Kinashi T, Harazaki M, Iizuka T, Hattori M, Minato N: CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rapl. FEBS Lett 489:249–253, 2001Google Scholar
  26. 26.
    Noel PJ, Boise LH, Thompson CB: Regulation of T cell activation by CD28 and CTLA4. Adv Exp Med Biol 406:209–217, 1996Google Scholar
  27. 27.
    Genot EM, Arrieumerlou C, Ku G, Burgering BM, Weiss A, Kramer IM: The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Racl and phosphatidylinositide 3-kinase. Mol Cell Biol 20:5469–5478, 2000Google Scholar
  28. 28.
    Tafuri A, Shahinian A, Bladt F, et al: ICOS is essential for effective T-helper-cell responses. Nature 409:105–109, 2001Google Scholar
  29. 29.
    Burgering BM, Coffer PJ: Protein kinase B (c-Akt) in phosphate-dylinositol-3-OH kinase signal transduction. Nature 376:599–602, 1995Google Scholar
  30. 30.
    Scanga SE, Ruel L, Binari RC, Snow B, Stambolic V, Bouchard D, Peters M, Calvieri B, Mak TW, Woodgett JR, et al: The conserved PI3K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19:3971–3977, 2000Google Scholar
  31. 31.
    Viola A, Lanzavecchia A: T cell activation determined by T cell receptor number and tunable thresholds. Science 273:104–106, 1996Google Scholar
  32. 32.
    Bianchi E, Denti S, Granata A, Bossi G, Geginat J, Villa A, Rogge L, Pardi R: Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature 404:617–621, 2000Google Scholar
  33. 33.
    Geginat J, Bossi G, Bender JR Pardi R: Anchorage dependence of mitogen-induced GI to S transition in primary T lymphocytes. J Immunol 162:5085–5093, 1999Google Scholar
  34. 34.
    Irie-Sasaki J, Sasaki T, Matsumoto W, et al: CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–354, 2001Google Scholar
  35. 35.
    Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM: Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131:791–805, 1995Google Scholar
  36. 36.
    Peterson DA, DiPaolo RJ, Kanagawa O, Unanue ER: Negative selection of immature thymocytes by a few peptide-MHC complexes: Differential sensitivity of immature and mature T cells. J Immunol 162:3117–3120, 1999Google Scholar
  37. 37.
    Binstadt BA, Brumbaugh KM, Dick CJ, Scharenberg AM, Williams BL, Colonna M, Lanier LL, Kinet JP, Abraham RT, Leibson PJ: Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5:629–638, 1996Google Scholar
  38. 38.
    Johnson KG, LeRoy FG, Borysiewicz LK, Matthews RJ: TCR signaling thresholds regulating T cell development and activation are dependent upon SHP-1. J Immunol 162:3802–3813, 1999Google Scholar
  39. 39.
    Levkowitz G, Waterman H, Ettenberg SA, et al: Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040, 1999Google Scholar
  40. 40.
    Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC: Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 21:21, 2000Google Scholar
  41. 41.
    Wang X, Gjorloff-Wingren A, Saxena M, Pathan N, Reed JC, Mustelin T: The tumor suppressor PTEN regulates T cell survival and antigen receptor signaling by acting as a phosphatidylinositol 3-phosphatase. J Immunol 164:1934–1939, 2000Google Scholar
  42. 42.
    Shan X, Czar MJ, Bunnell SC, Liu P, Liu Y, Schwartzberg PL Wange RL: 2000 Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol 20:6945–6957, 2000Google Scholar
  43. 43.
    Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP: Impaired Fas response and autoimmunity in Pten1/2 mice. Science 285:2122–2125, 1999Google Scholar
  44. 44.
    Demetriou M, Granovsky M, Quaggin S, Dennis JW: Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation.Nature 409:733–739, 2001Google Scholar
  45. 45.
    Kucik DF, Dustin ML, Miller JM, Brown EJ: Adhesion activating phorbol ester increases the mobility of leukocyte integrin LFA-1 cultured lymphocytes. J Clin Invest 97:2139–2144, 1996Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Michael L. Dustin
    • 1
  1. 1.Program in Molecular Pathogenesis and Department of Pathology, Skirball Institute of Molecular MedicineNew York University School of MedicineNew York

Personalised recommendations