Glycoconjugate Journal

, Volume 17, Issue 12, pp 835–848 | Cite as

Glycosylations versus conformational preferences of cancer associated mucin core

  • Jason Schuman
  • Dongxu Qiu
  • R. Rao Koganty
  • B. Michael Longenecker
  • A. Patricia Campbell


Synthetic oligosaccharide vaccines based on core STn (sialyl α2-6 GalNAc) carbohydrate epitopes are being evaluated by a number of biopharmaceutical firms as potential immunotherapeutics in the treatment of mucin-expressing adenocarcinomas. The STn carbohydrate epitopes exist as discontinuous clusters, O-linked to proximal serine and threonine residues within the mucin sequence. In an effort to probe the structure and dynamics of STn carbohydrate clusters as they may exist on the cancer-associated mucin, we have used NMR spectroscopy and MD simulations to study the effect of O-glycosylation of adjacent serine residues in a repeating (Ser)n sequence. Three model peptides/glyco-peptides were studied: a serine trimer containing no carbohydrate groups ((Ser)3 trimer); a serine trimer containing three Tn (GalNAc) carbohydrates α-linked to the hydroxyls of adjacent serine sidechains ((Ser.Tn)3 trimer); and a serine trimer containing three STn carbohydrates α-linked to the hydroxyls of adjacent serine sidechains ((Ser.STn)3 trimer). Our results demonstrate that clustering of carbohydrates shifts the conformational equilibrium of the underlying peptide backbone into a more extended and rigid state, an arrangement that could function to optimally present the clustered carbohydrate antigen to the immune system. Steric effects appear to drive these changes since an increase in the size of the attached carbohydrate (STn versus Tn) is accompanied by a stronger shift in the equilibrium toward the extended state. In addition, NMR evidence points to the formation of hydrogen bonds between the peptide backbone NH protons and the proximal GalNAc groups in the (Ser.Tn)3 and (Ser.STn)3 trimers. The putative peptide-sugar hydrogen bonds may also play a role in influencing the conformation of the underlying peptide backbone, as well as the orientation of the O-linked carbohydrate. The significance of these results will be discussed within the framework of developing clustered STn-based vaccines, capable of targeting the clustered STn epitopes on the cancer-associated mucin.

cancer vaccine glycopeptide MUC-1 immunotherapy NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M, Biochim Biophys Acta 1455, 301–13 (1999).PubMedGoogle Scholar
  2. 2.
    Miles DW, Taylor-Papadimitriou J, Pharmacol Ther 82, 97–106 (1999).PubMedGoogle Scholar
  3. 3.
    Apostolopoulos V, Sandrin MS, McKenzie IF, J Mol Med 77, 427–36 (1999).PubMedGoogle Scholar
  4. 4.
    Apostolopoulos V, Pietersz GA, McKenzie IF, Curr Opin Mol Ther 1, 98–103 (1999).PubMedGoogle Scholar
  5. 5.
    van den Steen P, Rudd PM, Dwek RA, Podenakker G, Crit Rev Biochem Mol Biol 33, 151–208 (1998).PubMedGoogle Scholar
  6. 6.
    Rudd PM, Dwek RA, Crit Rev Biochem Mol Biol 32, 1–100 (1997).PubMedGoogle Scholar
  7. 7.
    Carlstedt I, Davies JR, Biochem Soc Trans 25, 214–9 (1997).PubMedGoogle Scholar
  8. 8.
    Koganty RR, Reddish MA, Longenecker BM. In Glycopeptides and Related Compounds: Synthesis, Analysis and Application, edited by Large DG, Warren CD (Dekker, New York, 1997), pp. 707–43.Google Scholar
  9. 9.
    Apostolopoulos V, McKenzie IF, Crit Rev Immunol 14, 293–309 (1994).PubMedGoogle Scholar
  10. 10.
    Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J, Int J Cancer 43, 1072–6 (1989).PubMedGoogle Scholar
  11. 11.
    Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS, Cancer Res 49, 197–204 (1989).PubMedGoogle Scholar
  12. 12.
    Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH, Glycoconj J 15, 29–35 (1998).PubMedGoogle Scholar
  13. 13.
    Zhuang D, Yousefi S, Dennis JW, Cancer Biochem Biophys 12, 185–98 (1991).PubMedGoogle Scholar
  14. 14.
    Brockhausen I, Yang J, Dickinson N, Ogata S, Itzkowitz SH, Glycoconj J 15, 595–603 (1998).PubMedGoogle Scholar
  15. 15.
    Cao Y, Karstden U, Otto G, Bannascth P, Virchows Arch 434, 503–9 (1999).PubMedGoogle Scholar
  16. 16.
    Cao Y, Schlag PM, Karsten U, Virchows Arch 431, 159–66 (1997).PubMedGoogle Scholar
  17. 17.
    Springer GF, J Mol Med 75, 594–602 (1997).PubMedGoogle Scholar
  18. 18.
    Springer GF, Crit Rev Oncog 6, 57–85 (1995).PubMedGoogle Scholar
  19. 19.
    Springer GF, Science 224, 1198–1206 (1984).Google Scholar
  20. 20.
    Kishikawa T, Ghazizadeh M, Sasaki Y, Springer GF, Jpn J Cancer Res 90, 326–32 (1999).PubMedGoogle Scholar
  21. 21.
    Terasawa K, Furumoto H, Kamada M, Aono T, Cancer Res 56, 2229–32 (1996).PubMedGoogle Scholar
  22. 22.
    David L, Nesland JM, Clausen H, Carneiro F, Sobrinho-Simoes M, APMIS Suppl 27, 162–72 (1992).PubMedGoogle Scholar
  23. 23.
    Takao S, Uchikura K, Yonezawa S, Shinchi H, Aikou T, Cancer 86, 1966–75 (1999).PubMedGoogle Scholar
  24. 24.
    Imada T, Rino Y, Hatori S, Takahashi M, Amano T, Kondo J, Suda T, Hepatogastroenterology 46, 208–14 (1999).PubMedGoogle Scholar
  25. 25.
    Terashima S, Takano Y, Ohori T, Kanno T, Kimura T, Motoki R, Kawaguchi T, Surg Today 28, 682–6 (1998).PubMedGoogle Scholar
  26. 26.
    Werther JL, Tatematsu M, Klein R, Kurihara M, Kumagai K, Llorens P, Guidugli Neto J, Bodian C, Pertsemlidis D, Yamachika T, Kitou T, Itzkowitz S, Int J Cancer 69, 193–9 (1996).PubMedGoogle Scholar
  27. 27.
    Miles DW, Linehan J, Smith P, Filipe I, Br J Cancer 71, 1074–6 (1995).PubMedGoogle Scholar
  28. 28.
    Takahashi I, Maehara Y, Kusumoto T, Kohnoe S, Kakeji Y, Baba H, Sugimachi K, Br J Cancer 69, 163–6 (1994).PubMedGoogle Scholar
  29. 29.
    Kobayashi H, Terao T, Kawashima Y, J Clin Oncol 10, 95–101 (1992).PubMedGoogle Scholar
  30. 30.
    Soares R, Marinho A, Schmitt F, Pathol Res Pract 192, 1181–6 (1996).PubMedGoogle Scholar
  31. 31.
    Terasawa K, Furumoto H, Kamada M, Aono T, Cancer Res 56, 2229–32 (1996).PubMedGoogle Scholar
  32. 32.
    Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH, Brodt P, Byrd JC, Gastroenterology 110, 1354–67 (1996).PubMedGoogle Scholar
  33. 33.
    Ragupathi G, Howard L, Cappello S, Koganty RR, Qiu D, Longenecker BM, Reddish MA, Lloyd KO, Livingston PO, Cancer Immunol Immunother 48, 1–8 (1999).PubMedGoogle Scholar
  34. 34.
    MacLean GD, Miles DW, Rubens RD, Reddish MA, Longenecker BM, J Immunother Emphasis Tumor Immunol 19, 309–16 (1996).PubMedGoogle Scholar
  35. 35.
    Reddish MA, MacLean GD, Poppema S, Berg A, Longenecker BM, Cancer Immunol Immunother 42, 303–9 (1996).PubMedGoogle Scholar
  36. 36.
    Ogata S, Koganty R, Reddish M, Longenecker BM, Chen A, Perez C, Itzkowitz SH, Glycoconj J 15, 29–35 (1998).PubMedGoogle Scholar
  37. 37.
    Reddish MA, Jackson L, Koganty RR, Qiu D, Hong W, Longenecker BM, Glycoconj J 14, 549–60 (1997).PubMedGoogle Scholar
  38. 38.
    Zhang S, Walberg LA, Ogata S, Itzkowitz SH, Koganty RR, Reddish M, Gandhi SS, Longenecker BM, Lloyd KO, Livingston PO, Cancer Res, 55, 3364–8 (1995).PubMedGoogle Scholar
  39. 39.
    States DJ, Haberkorn RA, Ruben DJ, J Magn Reson 48, 286–92 (1982).Google Scholar
  40. 40.
    Piatini U, Sorenson OW, Ernst RR, J Am Chem Soc 104, 6800–1 (1982).Google Scholar
  41. 41.
    Rance M, Sorenson OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K, Biochem Biophys Res Commun 117, 479–85 (1983).PubMedGoogle Scholar
  42. 42.
    Bax A, Davis DG, J Magn Reson 65, 355–60 (1985).Google Scholar
  43. 43.
    Kessler H, Griesinger C, Kerssebaum R, Wagner K, Ernst RR, J Am Chem Soc 109, 607–9 (1987).Google Scholar
  44. 44.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT, Proteins 4, 31–47 (1988).PubMedGoogle Scholar
  45. 45.
    Balaji PV, Qasba PK, Rao VS, Glycobiology 4, 497–515 (1994).PubMedGoogle Scholar
  46. 46.
    Kozar T, Tvaroska I, Carver JP, Glyconjugate J 15, 187–91 (1998).Google Scholar
  47. 47.
    Gerken TA, Arch Biochem Biophys 247, 239–53 (1986).PubMedGoogle Scholar
  48. 48.
    Liu X, Sejbal J, Kotovych G, Koganty RR, Reddish MA, Jackson L, Gandhi SS, Mendonca AJ, Longenecker BM, Glyconjugate J 12, 607–17 (1995).Google Scholar
  49. 49.
    Mimura Y, Inoue Y, Maeji NJ, Chujo R, Int J Pept Prot Res 34, 363–8 (1989).Google Scholar
  50. 50.
    Butenhof KJ, Gerken TA, Biochemistry 32, 2650–63 (1993).PubMedGoogle Scholar
  51. 51.
    Wishart DS, Sykes BD, Richards FM, J Mol Biol 222, 311–33 (1991).PubMedGoogle Scholar
  52. 52.
    Osapay K, Case DA, J Biomol NMR 4, 215–30 (1994).PubMedGoogle Scholar
  53. 53.
    Wishart DS, Bigam, CG, Holm A, Hodges RS, Sykes BD, J Biol NMR 5, 67–81 (1995).Google Scholar
  54. 54.
    Dyson HJ, Wright PE, Annu Rev Biophys Chem 20, 519–38 (1991).Google Scholar
  55. 55.
    Live DH, Williams LJ, Kuduk SD, Schwarz JB, Glunz PW, Chen XT, Sames D, Kumar RA, Danishefsky SJ, Proc Natl Acad Sci USA 96, 3489–93 (1999).PubMedGoogle Scholar
  56. 56.
    Liang R, Adreotti AH, Kahne D, J Am Chem Soc 117, 10395–6 (1995).Google Scholar
  57. 57.
    Rose GD, Gierasch LM, Smith JA, Adv Protein Chem 37, 1–109 (1985).PubMedGoogle Scholar
  58. 58.
    Watts CR, Tessmer MR, Kallick DA, Lett Pept Sci 2, 59–70 (1995).Google Scholar
  59. 59.
    Andersen NH, Neidigh JW, Harris SM, Lee GM, Liu Z, Tong H, J Am Chem Soc 119, 8547–61 (1997).Google Scholar
  60. 60.
    Pardi A, Billeter M, Wüthrich K, J Mol Biol 180, 741–51 (1984).PubMedGoogle Scholar
  61. 61.
    Yao J, Feher VA, Espejo BF, Reymond MT, Wright PE, Dyson HJ, J Mol Biol 243, 736–53 (1994).PubMedGoogle Scholar
  62. 62.
    Schuster O, Klich G, Sinnwell V, Kranz H, Paulsen H, Mayer B, J Biomol NMR 14, 33–45 (1999).PubMedGoogle Scholar
  63. 63.
    Van den Steen P, Rudd PM, Dwek RA, Opdenakker G, Crit Rev Biochem Mol Biol 33, 151–208 (1998).PubMedGoogle Scholar
  64. 64.
    Bailey D, Renouf DV, Large DG, Warren CD, Hounsell EF, Carbohyd Res 324, 242–54 (2000).Google Scholar
  65. 65.
    Andreotti AH, Kahne D, J Am Chem Soc 115, 3352–3 (1993).Google Scholar
  66. 66.
    McManus AM, Otvos L, Hoffmann R, Craik DJ, Biochemistry 38, 705–14 (1999).PubMedGoogle Scholar
  67. 67.
    Gururaja TL, Ramasubbu N, Venugopalan P, Reddy MS, Ramalingam K, Levine MJ, Glycoconj J 15, 457–67 (1998).PubMedGoogle Scholar
  68. 68.
    Shogren R, Gerken TA, Jentoft N, Biochemistry 28, 5525–36 (1989).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jason Schuman
    • 1
  • Dongxu Qiu
    • 2
  • R. Rao Koganty
    • 2
  • B. Michael Longenecker
    • 2
  • A. Patricia Campbell
    • 1
  1. 1.Department of Medicinal Chemistry, School of PharmacyUniversity of WashingtonSeattle
  2. 2.Biomira Inc.EdmontonCanada

Personalised recommendations