Optical and Quantum Electronics

, Volume 33, Issue 4–5, pp 413–431 | Cite as

Integrated optical cross strip polarizer concept

  • Manfred Lohmeyer
  • Remco Stoffer


Passing across an abrupt junction from a thick vertically bimodal waveguide to a thinner single mode segment, guided light can undergo complete destructive interference, provided that the geometry and the phases of the modes in the initial segment are properly adjusted. We propose to employ this effect to realize a simple polarizer configuration, using a strip that is etched from a planar waveguide. A beam of light is made to pass the strip perpendicularly. The light enters from the single mode waveguide outside the strip into the strip segment, which is configured to support two modes. At the end of the strip, apart from reflections, the amount of power that is guided in the following lower segment depends on the local phases of the two modes. These phases are different for TE and TM light, hence we may expect a polarization dependent power transfer, resulting in polarizer performance for a properly selected geometry. The paper describes in detail the modeling of the device in terms of rigorous mode expansion. Design guidelines and tolerance requirements for geometric and material parameters are discussed. For typical Si3N4/SiO2 materials, our calculations predict a peak performance of 34 dB polarization discrimination and 0.3 dB insertion loss for a device with a total length of about 12 μm that selects TE polarization at a wavelength of 1.3 μm.

integrated optics numerical modeling optical interferometer optical polarizer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bersiner, L., U. Hempelmann and E. Strake. J. Opt. Soc. Am. B 8 422, 1991.Google Scholar
  2. Bloemer, M.J. and J.W. Haus. Opt. Lett. 17 598, 1992a.Google Scholar
  3. Bloemer, M.J. and J.W. Haus. Appl. Phys. Lett. 61 1619, 1992b.Google Scholar
  4. Bloemer, M.J. and J.W. Haus. J. Lightwave Technol. 14 1534, 1996.Google Scholar
  5. Brooke, G.H. and M.M.Z. Kharadly. IEEE Trans. Microwave Theory Tech. MTT-30 760, 1982.Google Scholar
  6. Findakly, T., B. Chen and D. Booher. Opt. Lett. 8 641, 1983.Google Scholar
  7. Han, K.G., D.H. Kim, J.C. Jo and S.S. Choi. Opt. Lett. 16 1086, 1991.Google Scholar
  8. Han, K.G., S. Kim and S.S. Choi. Opt. Lett. 15 108, 1990.Google Scholar
  9. Hempelmann, U., H. Herrmann, G. Mrozynski, V. Reimann and W. Sohler. J. Lightwave Technol. 13 1750, 1995.Google Scholar
  10. Johnstone, W., G. Stewart, T. Hart and B. Culshaw. J. Lightwave Technol. 8 538, 1990.Google Scholar
  11. Lee, S.S., S. Garner, W.H. Steier and S.Y. Shin. Appl. Opt. 38 530, 1999.Google Scholar
  12. Lohmeyer, M., N. Bahlmann and P. Hertel. Opt. Commun. 163 86, 1999a.Google Scholar
  13. Lohmeyer, M., N. Bahlmann, O. Zhuromskyy and P. Hertel. Opt. Quantum Electr. 31 877, 1999b.Google Scholar
  14. Nakano, T., K. Baba and M. Miyagi. J. Opt. Soc. Am. A 11 2030, 1994.Google Scholar
  15. Oh, M.-C., S.-Y. Shin, W.-Y. Hwang and J.-J. Kim. IEEE Photonics Technol. Lett. 8 375, 1996.Google Scholar
  16. Pérez, C.S., A. Morand, P. Benech, S. Tedjini, D. Bosc and A. Rousseau. Low cost integrated optical polarizer with an hybrid structure of birefringent polymer and ion-exchanged glass waveguide. In: Integrated Optics Devices III, eds. G.C. Righini and S.I. Najafi. SPIE Proceedings, Vol. 3620, p. 118, 1999.Google Scholar
  17. Saini, M., E.K. Sharma and M. Singh. Opt. Lett. 20 365, 1995.Google Scholar
  18. Shani, Y., C.H. Henry, R.C. Kistler and K.J. Orlowsky. Appl. Opt. 29 337, 1990.Google Scholar
  19. Sletten, M.A. and S.R. Seshadri. J. Opt. Soc. Am. A 7 1174, 1990.Google Scholar
  20. Stoffer, R., H.J.W.M. Hoekstra, R.M. de Ridder, E. van Groesen and F.P.H. van Beckum. Opt. Quantum Electr. 32 947, 2000.Google Scholar
  21. Sztefka, G. and H.P. Nolting. IEEE Photonics Technol. Lett. 5 554, 1993.Google Scholar
  22. Taflove, A. Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA, USA: Artech House Inc., 1995.Google Scholar
  23. Thyagarajan, K., S. Diggavi, A.K. Ghatak, W. Johnstone, G. Stewart and B. Culshaw. Opt. Lett. 15 1041, 1990.Google Scholar
  24. Thyagarajan, K. and S. Pilevar. J. Lightwave Technol. 10 1334, 1992.Google Scholar
  25. Thyagarajan, K., S.D. Seshadri and A.K. Ghatak. J. Lightwave Technol. 9 315, 1991.Google Scholar
  26. Trutschel, U., F. Ouelette, V. Delisle, M.A. Duguay, G. Fogarty and F. Lederer. J. Lightwave Technol. 13 239, 1995.Google Scholar
  27. Vassallo, C. Optical Waveguide Concepts. Amsterdam, Elsevier, 1991.Google Scholar
  28. Veasey, D.L., R.K. Hickernell, D.R. Larson and T.E. Batchman. Opt. Lett. 16 717, 1991.Google Scholar
  29. Veasey, D.L., D.R. Larson and I. Veigl. Appl. Opt. 33 1242, 1994.Google Scholar
  30. Willems, J., J. Haes and R. Baets. Opt. Quantum Electr. 27 995, 1995.Google Scholar
  31. Wörhoff, K., P.V. Lambeck, H. Albers, O.F.J. Noordman, N.F. van Hulst and T.J.A. Popma. Optimization of LPCVD Silicon Oxynitride growth to large refractive index homogeneity and layer thickness uniformity. In: Micro-optical Technologies for Measurement, Sensors, and Microsystems II, eds. O.M. Parriaux, E.B. Kley, B. Culshaw and M. Breidne, SPIE Proceedings, Vol. 3099, p. 257, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.MESA+ Research InstituteUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations