Advertisement

Evolutionary Ecology

, Volume 13, Issue 7–8, pp 721–754 | Cite as

Variable Selection and the Coexistence of Multiple mimetic forms of the Butterfly Heliconius numata

  • Mathieu JoronEmail author
  • Ian R. Wynne
  • Gerardo Lamas
  • James Mallet
Article

Abstract

Polymorphism in aposematic animals and coexistence of multiple mimicry rings within a habitat are not predicted by classical Müllerian mimicry. The butterfly Heliconius numata Cramer (Lepidoptera: Nymphalidae; Heliconiinae) is both polymorphic and aposematic. The polymorphism is due to variation at a single locus (or `supergene') which determines colour patterns involved in Müllerian mimicry. We sampled 11 sites in a small area (approx. 60×30km) of North-eastern Peru for H. numata and its co-mimics in the genus Melinaea and Athyrtis (Ithomiinae), and examined the role of temporal and spatial heterogeneity in the maintenance of polymorphism. Colour-patterns of Melinaea communities, which constitute the likely `mimetic environment' for H. numata, are differentiated on a more local scale than morphs of H. numata, but the latter do show a strong and significant response to local selection for colour-pattern. In contrast, analysis of enzyme polymorphism in H. numata across the region revealed no spatial structure, which is consistent with a high mobility of this species. Differences in spatial variability in the two taxa may have caused H. numata to become polymorphic, while temporal variability, not significant in this study, probably has a lesser effect. The mimetic polymorphism is therefore explained by means of multiple selection-migration clines at a single locus, a similar process to that which explains narrow hybrid zones between geographic races of other Heliconius butterflies.

Heliconius numata Melinaea Ithomiinae aposematism Müllerian mimicry polymorphism spatial heterogeneity frequency-dependent selection population genetic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M., Anderson, D., Francis, B. and Hinde, J. (1989) Statistical Modelling in GLIM. Oxford University Press, Oxford, UK.Google Scholar
  2. Bates, H.W. (1862) Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans. Linn. Soc. Lond. 23, 495-566.Google Scholar
  3. Beccaloni, G.W. (1997a) Ecology, natural history and behaviour of ithomiine butterflies and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). Trop. Lepid. 8, 103-124.Google Scholar
  4. Beccaloni, G.W. (1997b) Vertical stratification of ithomiine butterfly (Nymphalidae: Ithomiinae) mimicry complexes: the relationship between adult flight height and larval host-plant height. Biol. J. Linn. Soc. 62, 313-341.CrossRefGoogle Scholar
  5. Brown, K.S. (1976) An illustrated key to the silvaniform Heliconius (Lepidoptera: Nymphalidae) with descriptions of new subspecies. Trans. Am. Entom. Soc. 102, 373-484.Google Scholar
  6. Brown, K.S. (1977) Geographical patterns of evolution in Neotropical Lepidoptera: differentiation of the species of Melinaea and Mechanitis (Nymphalidae, Ithomiinae). Syst. Entomol. 2, 161-197.Google Scholar
  7. Brown, K.S. (1979) Ecologia Geográfica e Evolução nas Florestas Neotropicais. Universidade Estadual de Campinas, Campinas, Brazil.Google Scholar
  8. Brown, K.S. (1987) Chemistry at the Ithomiinae-Solanaceae interface. Ann. Miss. Bot. Gard. 74, 359-397.CrossRefGoogle Scholar
  9. Brown K.S. and Benson, W.W. (1974) Adaptive polymorphism associated with multiple Müllerian mimicry in Heliconius numata. Biotropica 6, 205-228.CrossRefGoogle Scholar
  10. Chai, P. (1996) Butterfly visual characteristics and ontogeny of responses to butterflies by a specialized tropical bird. Biol. J. Linn. Soc. 59, 37-67.CrossRefGoogle Scholar
  11. Clarke, C.A., Clarke, F.M.M. and Gordon, I.J. (1995) Mimicry and other controversial topics in East African Lepidoptera. J. East Afr. Nat. Hist. 84, 3-18.CrossRefGoogle Scholar
  12. Cook, L.M. and Brower, L.P. (1969) Observations of polymorphism in two species of heliconiine butterflies from Trinidad, West Indies. Entomologist 102, 125-128.Google Scholar
  13. Dempster, E.R. (1955) Maintenance of genetic heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 70, 25-32.Google Scholar
  14. Huheey, J.E. (1976) Studies of warning coloration and mimicry. VII. Evolutionary consequences of a Batesian-Müllerian spectrum: a model for Müllerian mimicry. Evolution 30, 86-93.CrossRefGoogle Scholar
  15. Jiggins, C.D., McMillan, W.O., King, P. and Mallet, J. (1997) The maintenance of species differences across a Heliconius hybrid zone. Heredity 79, 495-505.CrossRefGoogle Scholar
  16. Joron, M. (2000) Warning colour and Müllerian mimicry: the diversification puzzle. Doctoral Thesis, Département Biologie, Evolution, Environnement, Université de Montpellier II, Montpellier, France, pp. 225.Google Scholar
  17. Joron, M. and Mallet, J. (1998) Diversity in mimicry: paradox or paradigm? Trends Ecol. Evol. 13, 461-466.CrossRefGoogle Scholar
  18. Kapan, D. (2001) Three-butterfly system provides first field test of Müllerian mimicry. Nature 409, 338-340.PubMedCrossRefGoogle Scholar
  19. Lamas, G. (1982) A preliminary zoogeographical division of Peru, based on butterfly distributions (Lepidoptera, Papilionoidea). In G.T. Prance (ed.) Biological Diversification in the Tropics. Columbia University Press, New York, USA, pp. 336-357.Google Scholar
  20. Linares, M. (1997) Origin of neotropical mimetic diversity from a three-way hybrid zone of Heliconius cydno butterflies. In H. Ulrich (ed.) Tropical Diversity and Systematics. Proceedings of the International Symposium on Biodiversity and Systematics in Tropical Ecosystems, Bonn, 1994. Zoologisches Forschunginstitut und Museum Alexander Koenig, Bonn, Germany, pp. 93-108.Google Scholar
  21. Mallet, J. (1986a) Dispersal and gene flow in a butterfly with home range behaviour: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 68, 210-217.CrossRefGoogle Scholar
  22. Mallet, J. (1986b) Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2, 198-215.Google Scholar
  23. Mallet, J. (1989) The genetics of warning colour in Peruvian hybrid zones of Heliconius erato and H. melpomene. Proc. R. Soc. London B Biol. Sci. 236, 163-185.Google Scholar
  24. Mallet, J. (2001) Causes and consequences of a lack of coevolution in Müllerian mimicry. Evol. Ecol. 13, 777-806.CrossRefGoogle Scholar
  25. Mallet, J. and Barton, N.H. (1989) Strong natural selection in a warning colour hybrid zone. Evolution 43, 421-431.CrossRefGoogle Scholar
  26. Mallet, J., Barton, N.H., Lamas, G., Santisteban C.J., Muedas M.M. and Eeley, H. (1990) Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. Genetics 124, 921-936.PubMedGoogle Scholar
  27. Mallet, J. and Gilbert, L.E. (1995) Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159-180.CrossRefGoogle Scholar
  28. Mallet, J. and Joron, M. (1999) Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance and speciation. Annu. Rev. Ecol. Syst. 30, 201-233.CrossRefGoogle Scholar
  29. Mallet, J., Korman, A., Heckel, D.G. and King, P. (1993) Biochemical genetics of Heliothis and Helicoverpa (Lepidoptera: Noctuidae) and evidence for a founder event in Helicoverpa zea. Ann. Entom. Soc. Am. 86, 189-197.Google Scholar
  30. Mallet, J., Longino, J.T., Murawski, D., Murawski, A. and Simpson de Gamboa, A. (1987) Handling effect in Heliconius: where do all the butterflies go? J. Anim. Ecol. 56, 377-386.CrossRefGoogle Scholar
  31. Mallet, J., McMillan, W.O. and Jiggins, C.D. (1998) Mimicry and warning color at the boundary between races and species. In D. Howard and S. Berlöcher (eds) Endless Forms: Species and Speciation. Oxford University Press, New York, USA, pp. 390-403.Google Scholar
  32. Muko S. and Iwasa, Y. (2000) Species coexistence by permanent spatial heterogeneity in a lottery model. Theor. Popul. Biol. 57, 273-284.PubMedCrossRefGoogle Scholar
  33. Müller, F. (1879) Ithuna and Thyridia: a remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, xx-xxix.Google Scholar
  34. Owen, D.F., Smith, D.A.S., Gordon, I.J. and Owiny, A.M. (1994) Polymorphic Müllerian mimicry in a group of African butterflies: a re-assessment of the relationship between Danaus chrysippus, Acraea encedon and Acraea encedana (Lepidoptera: Nymphalidae). J. Zool. 232, 93-108.CrossRefGoogle Scholar
  35. Owen, R.E. and Owen, A.R.G. (1984) Mathematical paradigms for mimicry: recurrent sampling. J. Theor. Biol. 109, 217-247.CrossRefGoogle Scholar
  36. Raymond, M. and Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. J. Hered. 86, 248-249.Google Scholar
  37. Raymond, M. and Rousset, F. (2000) GENEPOP 3.2. Updated version: ftp://ftp.cefe.cnrs-mop.fr/genepop/(March 2000).Google Scholar
  38. Richardson, B.J. Baverstock, P.R. and Adams, M. (1986) Allozyme Electrophoresis. A Handbook for Animal Systematics and Population Studies. Academic Press, San Diego, USA.Google Scholar
  39. Roughgarden, J. (1979) Theory of Population Genetics and Evolutionary Ecology: an introduction. MacMillan Publishers, New York, USA.Google Scholar
  40. Smith, D.A.S., Owen, D.F., Gordon, I.J. and Owiny, A.M. (1993) Polymorphism and evolution in the butterfly Danaus chrysippus L. (Lepidoptera: Danainae). Heredity 71, 242-251.Google Scholar
  41. Smith, D.A.S., Gordon, I.J., Depew, L.A. and Owen, D.F. (1998) Genetics of the butterfly Danaus chrysippus (L.) in a broad hybrid zone, with special reference to sex ratio, polymorphism and intragenomic conflict. Biol. J. Linn. Soc. 65, 1-40.CrossRefGoogle Scholar
  42. Smith, D.A.S., Owen, D.F., Gordon, I.J. and Lowis, N.K. (1997) The butterfly Danaus chrysippus (L.) in East Africa: polymorphism and morph-ratio clines within a complex, extensive and dynamic hybrid zone. Zool. J. Linn. Soc. 120, 51-78.CrossRefGoogle Scholar
  43. Sokal, R.R. and Rohlf, F.J. (1995) Biometry. The Principles and Practice of Statistics in Biological Research. W.H. Freeman & Co., New York, USA.Google Scholar
  44. Speed, M.P. (1993) Müllerian mimicry and the psychology of predation. Anim. Behav. 45, 571-580.CrossRefGoogle Scholar
  45. Speed, M.P. and Turner, J.R.G. (1999) Learning and memory in mimicry: II. Do we understand the mimicry spectrum?. Biol. J. Linn. Soc. 67, 281-312.CrossRefGoogle Scholar
  46. Speed, M.P. (2001) Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evol. Ecol. 13, 755-776.CrossRefGoogle Scholar
  47. Srygley, R.B. and Chai, P. (1990) Predation and the elevation of thoracic temperature in brightly colored Neotropical butterflies. Am. Nat. 135, 766-787.CrossRefGoogle Scholar
  48. Turner, J.R.G. (1995) Mimicry as a model for coevolution. In R. Arai, M. Kato and Y. Doi (eds) Biodiversity and Evolution. The National Science Museum Foundation, Tokyo, Japan, pp. 131-150.Google Scholar
  49. Turner, J.R.G., Kearney, E.P. and Exton, L.S. (1984) Mimicry and the Monte Carlo predator: the palatability spectrum and the origins of mimicry. Biol. J. Linn. Soc. 23, 247-268.Google Scholar
  50. Wynne, I.R., Loxdale, H.D. and Brookes, C.P. (1992) Use of cellulose acetate system for allozyme electrophoresis. In R.J. Berry, T.J. Crawford and G.M. Hewitt (eds) Genes in Ecology. Blackwell, Oxford, UK, pp. 494-499.Google Scholar
  51. Wynne, I.R., and Brookes, C.P. (1992) A device for producing multiple deep-frozen samples for allozyme electrophoresis. In R.J. Berry, T.J. Crawford and G. M. Hewitt (eds) Genes in Ecology. Blackwell, Oxford, UK, pp. 500-502.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Mathieu Joron
    • 1
    Email author
  • Ian R. Wynne
    • 2
  • Gerardo Lamas
    • 3
  • James Mallet
    • 2
  1. 1.Institut des Sciences de l'EvolutionUniversité de MontpellierIIMontpellierFrance
  2. 2.Department of BiologyUniversity College LondonLondonUK
  3. 3.Departamento de Entomología, Museo de Historia NaturalUniversidad Nacional Mayor de San MarcosLima-Peru

Personalised recommendations