A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models

  • Gerhard A. Holzapfel
  • Thomas C. Gasser
  • Ray W. Ogden

Abstract

In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined.

The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

biomechanics arteries artery wall material models constitutive laws finite deformations nonlinear elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abè, K. Hayashi and M. Sato (eds), Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, Springer-Verlag, New York (1996).Google Scholar
  2. 2.
    H. Bader, Dependence of wall stress in the human thoracic aorta on age and pressure. Circ. Res. 20 (1967) 354–361.ADSGoogle Scholar
  3. 3.
    P.C. Block, Mechanism of transluminal angioplasty. Am. J. Cardiology 53 (1984) 69C-71C.CrossRefGoogle Scholar
  4. 4.
    T.E. Carew, R.N. Vaishnav and D.J. Patel, Compressibility of the arterial wall. Circ. Res. 23 (1968) 61–68.Google Scholar
  5. 5.
    C.J. Chuong and Y.C. Fung, Three-dimensional stress distribution in arteries. J. Biomech. Engr. 105 (1983) 268–274.CrossRefGoogle Scholar
  6. 6.
    C.J. Chuong and Y.C. Fung, Residual stress in arteries. In: G.W. Schmid-Schönbein, S.L-Y. Woo and B.W. Zweifach (eds), Frontiers in Biomechanics, Springer-Verlag, New York (1986), pp. 117–129.Google Scholar
  7. 7.
    P.G. Ciarlet, Mathematical Elasticity. Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam (1988).MATHGoogle Scholar
  8. 8.
    R.H. Cox, Regional variation of series elasticity in canine arterial smooth muscles. Am. J. Physiol. 234 (1978) H542-H551.Google Scholar
  9. 9.
    R.H. Cox, Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Phys. 244 (1983) H298-H303.Google Scholar
  10. 10.
    A. Delfino, N. Stergiopulos, J.E. Moore and J.-J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30 (1997) 777–786.CrossRefGoogle Scholar
  11. 11.
    H. Demiray, A layered cylindrical shell model for an aorta. Int. J. Engr. Sci. 29 (1991) 47–54.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    S.X. Deng, J. Tomioka, J.C. Debes and Y.C. Fung, New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266 (1994) H1-H10.Google Scholar
  13. 13.
    H.M. Finlay, L. McCullough and P.B. Canham, Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32 (1995) 301–312.Google Scholar
  14. 14.
    P. Flory, Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57 (1961) 829–838.MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.F. Fuchs, Zur Physiologie und Wachstumsmechanik des Blutgefäßsystems. Archiv für die gesamte Physiologie 28 (1900).Google Scholar
  16. 16.
    Y.C. Fung, Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York (1990).MATHGoogle Scholar
  17. 17.
    Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissue, 2nd edn, Springer-Verlag, New York (1993).Google Scholar
  18. 18.
    Y.C. Fung, K. Fronek and P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237 (1979) H620-H631.Google Scholar
  19. 19.
    Y.C. Fung and S.Q. Liu, Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65 (1989) 1340–1349.Google Scholar
  20. 20.
    T.C. Gasser and G.A. Holzapfel, Rate-independent elastoplastic constitutive modeling of biological soft tissues: Part I. Continuum basis, algorithmic formulation and finite element implementation. Submitted (2000).Google Scholar
  21. 21.
    T.C. Gasser, C.A.J. Schulze-Bauer, E. Pernkopf, M. Stadler and G.A. Holzapfel, Rate-independent elastoplastic constitutive modeling of biological soft tissues: Part II. Percutaneous transluminal angioplasty. Submitted (2000).Google Scholar
  22. 22.
    J.M. Guccione, A.D. McCulloch and L.K. Waldman, Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME J. Biomech. Engr. 113 (1991) 42–55.Google Scholar
  23. 23.
    H.C. Han and Y.C. Fung, Species dependence of the zero-stress state of aorta: Pig versus rat. J. Biomech. Engr. 113 (1991) 446–451.Google Scholar
  24. 24.
    K. Hayashi, Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J. Biomech. Engr. 115 (1993) 481–488.Google Scholar
  25. 25.
    G.A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, Wiley, Chichester (2000).MATHGoogle Scholar
  26. 26.
    G.A. Holzapfel and T.C. Gasser, A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Engr. In press (2000).Google Scholar
  27. 27.
    G.A. Holzapfel, T.C. Gasser, M. Stadler and C.A.J. Schulze-Bauer, A multi-layer structural model for the elastic and viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Submitted (2000).Google Scholar
  28. 28.
    G.A. Holzapfel, C.A.J. Schulze-Bauer and M. Stadler, Mechanics of angioplasty: Wall, balloon and stent. In: J. Casey and G. Bao (eds), Mechanics in Biology, AMD-Vol. 242/BED-Vol. 46, The American Society of Mechanical Engineers, New York (2000), pp. 141–156.Google Scholar
  29. 29.
    G.A. Holzapfel and H.W. Weizsäcker, Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28 (1998) 377–392.CrossRefGoogle Scholar
  30. 30.
    W.H. Hoppmann and L. Wan, Large deformation of elastic tubes. J. Biomech. 3 (1970) 593–600.CrossRefGoogle Scholar
  31. 31.
    T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ (1987).MATHGoogle Scholar
  32. 32.
    J.D. Humphrey, Mechanics of arterial wall: Review and directions. Critical Reviews in Biomed. Engr. 23 (1995) 1–162.Google Scholar
  33. 33.
    J.D. Humphrey, An evaluation of pseudoelastic descriptors used in arterial mechanics. J. Biomech. Engr. 121 (1999) 259–262.Google Scholar
  34. 34.
    J.M. Huyghe, D.H. van Campen, T. Arts and R.M. Heethaar, A two-phase finite element model of the diastolic left ventricle. J. Biomech. 24 (1991) 527–538.CrossRefGoogle Scholar
  35. 35.
    V.A. Kas'yanov and A.I. Rachev, Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Comp. Mat. 16 (1980) 76–80.CrossRefGoogle Scholar
  36. 36.
    Y. Lanir and Y.C. Fung, Two-dimensional mechanical properties of rabbit skin-I. Experimental system. J. Biomech. 7 (1974) 29–34.CrossRefGoogle Scholar
  37. 37.
    B.M. Learoyd and M.G. Taylor, Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18 (1966) 278–292.Google Scholar
  38. 38.
    W.-W. Von Maltzahn, D. Besdo and W. Wiemer, Elastic properties of arteries: A nonlinear two-layer cylindrical model. J. Biomech. 14 (1981) 389–397.CrossRefGoogle Scholar
  39. 39.
    W.-W. Von Maltzahn and R.G. Warriyar, Experimental measurments of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17 (1984) 839–847.CrossRefGoogle Scholar
  40. 40.
    W.W. Nichols and M.F. O'Rourke, McDonald's Blood Flow in Arteries, 4th edn, Arnold, London (1998), chapter 4, pp. 73–97.Google Scholar
  41. 41.
    R.W. Ogden, Nearly isochoric elastic deformations: Application to rubberlike solids. J. Mech. Phys. Solids 26 (1978) 37–57.MATHMathSciNetCrossRefADSGoogle Scholar
  42. 42.
    R.W. Ogden, Non-linear Elastic Deformations, Dover Publication, New York (1997).Google Scholar
  43. 43.
    R.W. Ogden and C.A.J. Schulze-Bauer, Phenomenological and structural aspects of the mechanical response of arteries. In: J. Casey and G. Bao (eds), Mechanics in Biology, AMD-Vol. 242/BED-Vol. 46, The American Society of Mechanical Engineers, New York (2000), pp. 125–140.Google Scholar
  44. 44.
    H.S. Oktay, T. Kang, J. D. Humphrey and G.G. Bishop, Changes in the mechanical behavior of arteries following balloon angioplasty. In: 1991 ASME Advances in Bioengineering, New York (1991).Google Scholar
  45. 45.
    D.J. Patel and D.L. Fry, The elastic symmetry of arterial segments in dogs. Circ. Res. 24 (1969) 1–8.Google Scholar
  46. 46.
    A. Rachev, Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30 (1997) 819–827.CrossRefGoogle Scholar
  47. 47.
    A. Rachev and K. Hayashi, Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Engr. 27 (1999) 459–468.CrossRefGoogle Scholar
  48. 48.
    J.A.G. Rhodin, Architecture of the vessel wall. In: H.V. Sparks Jr., D.F. Bohr, A.D. Somlyo and S.R. Geiger (eds), Handbook of Physiology, The Cardiovascular System, Vol. 2, American Physiologial Society, Bethesda, Maryland (1980), pp. 1–31.Google Scholar
  49. 49.
    M.R. Roach and A.C. Burton, The reason for the shape of the distensibility curve of arteries. Canad. J. Biochem. Physiol. 35 (1957) 681–690.Google Scholar
  50. 50.
    E.K. Rodriguez, A. Hoger and A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27 (1994) 455–467.CrossRefGoogle Scholar
  51. 51.
    C.S. Roy, The elastic properties of the arterial wall. J. Physiol. 3 (1880–1882) 125–159.Google Scholar
  52. 52.
    B.S. Schultze-Jena, Ñber die schraubenförmige Struktur der Arterienwand. Gegenbauers Morphol. Jahrbuch 83 (1939) 230–246.Google Scholar
  53. 53.
    C.A.J. Schulze-Bauer, C. Mörth and G.A. Holzapfel, Passive biaxial mechanical response of aged human iliac arteries. Submitted (2000).Google Scholar
  54. 54.
    F.H. Silver, D.L. Christiansen and C.M. Buntin, Mechanical properties of the aorta: A review. Critical Reviews in Biomed. Engr. 17 (1989) 323–358.Google Scholar
  55. 55.
    B.R. Simon, M.V. Kaufmann, M.A. McAfee and A.L. Baldwin, Porohyperelastic finite element analysis of large arteries using ABAQUS. J. Biomech. Engr. 120 (1998) 296–298.Google Scholar
  56. 56.
    B.R. Simon, M.V. Kaufmann, M.A. McAfee, A.L. Baldwin and L.M. Wilson, Identification and determination of material properties for porohyperelastic analysis of large arteries. J. Biomech. Engr. 120 (1998) 188–194.Google Scholar
  57. 57.
    A.J.M. Spencer, Constitutive theory for strongly anisotropic solids, In: A.J.M. Spencer (ed.), Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences, Springer-Verlag, Wien (1984), pp. 1–32.Google Scholar
  58. 58.
    J. Staubesand, Anatomie der Blutgefäße. I. Funktionelle Morphologie der Arterien, Venen und arterio-venösen Anastomosen. In: M. Ratschow (ed.), Angiology, Thieme, Stuttgart (1959), Chapter 2, pp. 23–82.Google Scholar
  59. 59.
    K. Takamizawa and K. Hayashi, Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20 (1987) 7–17.CrossRefGoogle Scholar
  60. 60.
    A. Tözeren, Elastic properties of arteries and their influence on the cardiovascular system. J. Biomech. Engr. 106 (1984) 182–185.CrossRefGoogle Scholar
  61. 61.
    R.N. Vaishnav and J. Vossoughi, Estimation of residual strains in aortic segments. In: C.W. Hall (ed.), Biomedical Engineering II: Recent Developments, Pergamon Press, New York (1983), pp. 330–333.Google Scholar
  62. 62.
    R.N. Vaishnav, J.T. Young and D.J. Patel, Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32 (1973) 577–583.Google Scholar
  63. 63.
    D.A. Vorp, K.R. Rajagopal, P.J. Smolinsky and H.S. Borovetz, Identification of elastic properties of homogeneous orthotropic vascular segments in distension. J. Biomech. 28 (1995) 501–512.CrossRefGoogle Scholar
  64. 64.
    J. Vossoughi, Z. Hedjazi and F.S.I. Boriss, Intimal residual stress and strain in large arteries. In: 1993 ASME Advances in Bioengineering, New York (1993), pp. 434–437.Google Scholar
  65. 65.
    J. Vossoughi and A. Tözeren, Determination of an effective shear modulus of aorta. Russian J. Biomech. 1-2 (1998) 20–35.Google Scholar
  66. 66.
    H.W. Weizsäcker and J.G. Pinto, Isotropy and anisotropy of the arterial wall. J. Biomech. 21 (1988) 477–487.CrossRefGoogle Scholar
  67. 67.
    F.L. Wuyts, V.J. Vanhuyse, G.J. Langewouters, W.F. Decraemer, E.R. Raman and S. Buyle, Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Phys. Med. Biol. 40 (1995) 1577–1597.CrossRefGoogle Scholar
  68. 68.
    J. Xie, J. Zhou and Y.C. Fung, Bending of blood vessel wall: Stress-strain laws of the intimamedia and adventitia layers. J. Biomech. Engr. 117 (1995) 136–145.Google Scholar
  69. 69.
    Q. Yu, J. Zhou and Y.C. Fung, Neutral axis location in bending and Young's modulus of different layers of arterial wall. Am. J. Physiol. 265 (1993) H52-H60.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gerhard A. Holzapfel
    • 1
  • Thomas C. Gasser
    • 1
  • Ray W. Ogden
    • 2
    • 3
  1. 1.Institute for Structural Analysis – Computational BiomechanicsGraz University of TechnologyGrazAustria
  2. 2.Department of MathematicsUniversity of GlasgowU.K.
  3. 3.University GardensGlasgowU.K.

Personalised recommendations