Advertisement

Letters in Mathematical Physics

, Volume 54, Issue 4, pp 263–277 | Cite as

Pre-Poisson Algebras

  • Marcelo Aguiar
Article

Abstract

A definition of pre-Poisson algebras is proposed, combining structures of pre-Lie and zinbiel algebra on the same vector space. It is shown that a pre-Poisson algebra gives rise to a Poisson algebra by passing to the corresponding Lie and commutative products. Analogs of basic constructions of Poisson algebras (through deformations of commutative algebras, or from filtered algebras whose associated graded algebra is commutative) are shown to hold for pre-Poisson algebras. The Koszul dual of pre-Poisson algebras is described. It is explained how one may associate a pre-Poisson algebra to any Poison algebra equipped with a Baxter operator, and a dual pre-Poisson algebra to any Poisson algebra equipped with an averaging operator. Examples of this construction are given. It is shown that the free zinbiel algebra (the shuffle algebra) on a pre-Lie algebra is a pre-Poisson algebra. A connection between the graded version of this result and the classical Yang–Baxter equation is discussed.

Poisson algebras pre-Lie algebras zinbiel algebras dendriform algebras Baxter operators shuffle algebra Gerstenhaber algebras classical Yang–Baxter equation associative Yang–Baxter equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AI]
    Aguiar, M.: Infinitesimal Hopf algebras, In: Contemp. Math. 267, Amer. Math. Soc., Providence, 2000, pp. 1–30.Google Scholar
  2. [A2]
    Aguiar, M.: On the associative analog of Lie bialgebras, to appear in J. Algebra.Google Scholar
  3. [Bax]
    Baxter, G: An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731–742, 798–820.Google Scholar
  4. [Cha]
    Chapoton, F.: Un endofoncteur de la catégorie des opérades, Preprint (1998).Google Scholar
  5. [C-L]
    Chapoton, F., and Livernet, M.: Pre-Lie algebras and the rooted trees operad, Preprint (2000).Google Scholar
  6. [C-P]
    Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge Univ. Press, 1995.Google Scholar
  7. [Dri]
    Drinfeld, V. G.: Quantum groups, In: Proc. Int. Congr. Math., Berkeley (1986), pp. 798–820.Google Scholar
  8. [F-M]
    Fox, T. F. and Markl, M.: Distributive laws, bialgebras and cohomology, In: Contemp. Math. 202, Amer. Math. Soc., Providence, 1997, pp. 167–205.Google Scholar
  9. [Fre]
    Fresse, B.: Théorie des opérades de Koszul et homologie des algèbres de Poisson, Preprint (1999) 58pp.Google Scholar
  10. [Ger]
    Gerstenhaber, M.: The cohomology structure of an associative ring, Ann. of Math. 78(2) (1963), 267–288.Google Scholar
  11. [Kos]
    Koszul, J.-L.: Unpublished notes (1990).Google Scholar
  12. [Liv]
    Livernet, M.: Rational homotopy of Leibniz algebras, Manuscripta Math. 96 (1998), 295–315.Google Scholar
  13. [L1]
    Loday, J.-L.: Cup product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77, Univ. Louis Pasteur, Strasbourg, 1995, pp. 189–196.Google Scholar
  14. [L2]
    Loday, J.-L.: Dialgebras, Prépubl. Inst. Rech. Math. Av. 14 (1999).Google Scholar
  15. [Mar]
    Markl, M.: Distributive laws and koszulness, Ann. Inst. Fourier 46 (1996), 307–323.Google Scholar
  16. [R1]
    Rota, G.-C.: Baxter operators, an introduction, In: Joseph P. S. Kung, (ed.), Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries, Birkhäuser, Boston, 1995.Google Scholar
  17. [R2]
    Rota, G.-C.: Ten Mathematics Problems I will Never Solve, DMV Mitteilungen, Heft 2, 1998, pp. 45–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marcelo Aguiar
    • 1
  1. 1.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations