Journal of Bioenergetics and Biomembranes

, Volume 33, Issue 2, pp 79–92

Purification and Characterization of the Membrane-Bound Complex of an ABC Transporter, the Histidine Permease

  • Giovanna Ferro-Luzzi Ames
  • Kishiko Nikaido
  • Iris Xiaoyan Wang
  • Pei-Qi Liu
  • Cheng E. Liu
  • Calvin Hu
Article

Abstract

The bacterial histidine permease, an ABC transporter, from Salmonella typhimurium is composed of a membrane-bound complex, HisQMP2, comprising two hydrophobic subunits (HisQ and HisM), two copies of an ATP-hydrolyzing subunit, HisP, and a soluble receptor, HisJ. We describe the purification and characterization of HisQMP2 using a 6-histidines extension at the carboxy terminus of HisP [HisQMP2(his6)]. The purification is rapid and effective, giving a seven–fold purification with a yield of 85 and 98% purity. Two procedures are described differing in the detergent used (decanoylsucrose and octylglucoside, respectively) and in the presence of phospholipid. HisQMP2(his6) has ATPase and transport activities upon reconstitution into proteoliposomes (PLS). HisQMP2(his6) has a low level ATPase activity (intrinsic activity), which is stimulated to a different extent by the receptor—liganded and unliganded. Its pH optimum is 7.8–8.0, it requires a cation for activity and it displays cooperativity for ATP. The effect of various ATP analogs was analyzed. Determination of the molecular size of HisQMP2(his6) indicates that it is a monomer. The permeability properties of two kinds of reconstituted PLS preparations are described.

ABC transporter histidine permease ABC purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ames, G. F.-L. (1990). In Bacterial Energetics (Krulwich, T. A., ed.) Academic Press, New York, pp. 225–245.Google Scholar
  2. Ames, G. F.-L., Mimura, C., Holbrook, S., and Shyamala, V. (1992). Advan. Enzymol. 65, 1–47.Google Scholar
  3. Ames, G. F.-L., Liu, C. E., Joshi, A. K., and Nikaido, K. (1996). J. Biol. Chem. 271, 14264–14270.Google Scholar
  4. Barela, T. D. and Sherry, A. D. (1976). Anal. Biochem. 71, 351–357.Google Scholar
  5. Chifflet, S., Torriglia, A., Chiesa, R., and Tolosa, S. (1988). Anal. Biochem. 168, 1–4.Google Scholar
  6. Davidson, A. L. and Nikaido, H. (1991). J. Biol. Chem. 266, 8946–8951.Google Scholar
  7. Doige, C. A. and Ames, G. F.-L. (1993). Annu. Rev. Microbiol. 47, 291–319.Google Scholar
  8. Higgins, C. F. (1992). Annu. Rev. Cell Biol. 8, 67–113.Google Scholar
  9. Higgins, C. F. and Ames, G. F.-L. (1981). Proc. Natl. Acad. Sci. USA 78, 6038–6042.Google Scholar
  10. Hobson, A., Weatherwax, R., and Ames, G. F.-L. (1984). Proc. Natl. Acad. Sci. USA 81, 7333–7337.Google Scholar
  11. Hung, L.-W., Wang, I. X., Nikaido, K., Liu, P.-Q., Ames, G. F.-L., and Kim, S.-H. (1998). Nature (London) 396, 703–707.Google Scholar
  12. Hyde, S. C., Emsley, P., Hartshorn, M. J., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E., and Higgins, C. F. (1990). Nature (London) 346, 362–365.Google Scholar
  13. Kerppola, R. E. and Ames, G. F.-L. (1992). J. Biol. Chem. 267, 2329–2336.Google Scholar
  14. Kerppola, R. E., Shyamala, V., Klebba, P., and Ames, G. F.-L. (1991). J. Biol. Chem. 266, 9857–9865.Google Scholar
  15. Kreimer, D. I., Chai, K. P., and Ames, G. F.-L. (2000). Biochemistry 39, 14183–14195.Google Scholar
  16. Kustu, S. G. and Ames, G. F.-L. (1973). J. Bacteriol. 116, 107–113.Google Scholar
  17. Lill and Wickner, W. (1990). Cell 60, 271–280.Google Scholar
  18. Liu, C. E. (1996). Ph.D. Thesis. University of California at Berkeley, Berkeley, California.Google Scholar
  19. Liu, C. E. and Ames, G. F.-L. (1997). J. Biol. Chem. 272, 859–866.Google Scholar
  20. Liu, C. E., Liu, P.-Q., and Ames, G. F.-L. (1997). J. Biol. Chem. 272, 21883–21891.Google Scholar
  21. Liu, P.-Q. (1997). Ph.D. Thesis. University of California at Berkeley, Berkeley, California.Google Scholar
  22. Liu, P.-Q. and Ames, G. F.-L. (1998). Proc. Natl. Acad. Sci. USA 95, 3495–3500.Google Scholar
  23. Liu, P.-Q., Liu, C. E., and Ames, G. F.-L. (1999). J. Biol. Chem. 274, 18310–18318.Google Scholar
  24. Martin, R. G. and Ames, B. N. (1961). J. Biol. Chem. 236, 1372–1379.Google Scholar
  25. Mimura, C. S., Admon, A., Hurt, K. A., and Ames, G. F.-L. (1990).J. Biol. Chem. 265, 19535–19542.Google Scholar
  26. Mimura, C. S., Holbrook, S. R., and Ames, G. F.-L. (1991). Proc. Natl. Acad. Sci. USA 88, 84–88.Google Scholar
  27. Nikaido, H. (1994). FEBS Lett. 346, 55–58.Google Scholar
  28. Nikaido, K. and Ames, G. F.-L. (1992). J. Biol. Chem. 267, 20706–20712.Google Scholar
  29. Nikaido, K. and Ames, G. F.-L. (1999). J. Biol. Chem. 274, 26727–26735.Google Scholar
  30. Nikaido, K., Liu, P.-Q., and Ames, G. F.-L. (1997). J. Biol. Chem. 272, 27745–27752.Google Scholar
  31. Peterson, G. L. (1977). Anal. Biochem. 83, 346–356.Google Scholar
  32. Petronilli, V. and Ames, G. F.-L. (1991). J. Biol. Chem. 266, 16293–16296.Google Scholar
  33. Sharom, F. J., Liu, R., Romsicki,Y., and Lu, P. (1999). Biochim. Biophys. Acta 1461, 327–345.Google Scholar
  34. Shyamala, V., Baichwal, V., Beall, E., and Ames, G. F.-L. (1991). J. Biol. Chem. 266, 18714–18719.Google Scholar
  35. Strauss, E. (1999). Science 285, 814–815.Google Scholar
  36. Wolf, A., Shaw, E. W., Oh, B.-H., De Bondt, H., Joshi, A. K., and Ames, G. F.-L. (1995). J. Biol. Chem. 270, 16097–16106.Google Scholar
  37. Young, J. and Holland, I. B. (1999). Biochim. Biophys. Acta 1461, 177–200.Google Scholar
  38. Young, S. G. and Fielding, C. J. (1999). Nature Genet. 22, 316–318.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Giovanna Ferro-Luzzi Ames
  • Kishiko Nikaido
  • Iris Xiaoyan Wang
  • Pei-Qi Liu
  • Cheng E. Liu
  • Calvin Hu

There are no affiliations available

Personalised recommendations