International Journal of Thermophysics

, Volume 22, Issue 2, pp 605–616 | Cite as

Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers

  • S. Uma
  • A. D. McConnell
  • M. Asheghi
  • K. Kurabayashi
  • K. E. Goodson
Article

Abstract

Polycrystalline silicon is used in microelectronic and microelectromechanical devices for which thermal design is important. This work measures the in-plane thermal conductivities of free-standing undoped polycrystalline layers between 20 and 300 K. The layers have a thickness of 1 μm, and the measurements are performed using steady-state Joule heating and electrical-resistance thermometry in patterned aluminum microbridges. The layer thermal conductivities are found to depend strongly on the details of the deposition process through the grain size distribution, which is investigated using atomic force microscopy and transmission electron microscopy. The room-temperature thermal conductivity of as-grown polycrystalline silicon is found to be 13.8 W·m-1·K-1and that of amorphous recrystallized polycrystalline silicon is 22 W·m-1·K-1, which is almost an order of magnitude less than that of single-crystal silicon. The maximum thermal conductivities of both samples occur at higher temperatures than in pure single-crystalline silicon layers of the same thickness. The data are interpreted using the approximate solution to the Boltzmann transport equation in the relaxation time approximation together with Matthiessen's rule. These measurements contribute to the understanding of the relative importance of phonon scattering on grain and layer boundaries in polysilicon films and provide data relevant for the design of micromachined structures.

grain boundary scattering polycrystalline silicon phonon scattering thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed. (Kluwer, Boston, 1998), and references therein.Google Scholar
  2. 2.
    K. E. Goodson, Annu. Rev. Heat Transfer 6:323 (1995).Google Scholar
  3. 3.
    M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71:1798 (1997).Google Scholar
  4. 4.
    M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer 120:30 (1998).Google Scholar
  5. 5.
    Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74:3005 (1999).Google Scholar
  6. 6.
    J. W. Tringe, Ph.D. thesis (Stanford University, Palo Alto, CA, 1999).Google Scholar
  7. 7.
    C. H. Mastrangelo and R. S. Muller, Sensors Mater. 3:133 (1988).Google Scholar
  8. 8.
    Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, J. Appl. Phys. 63:1442 (1988).Google Scholar
  9. 9.
    D. Moser and H. Baltes, Sensors Actuators A 37-38:33 (1993).Google Scholar
  10. 10.
    O. M. Paul, J. Korvink, and H. Baltes, Sensors Actuators A 41-42:161 (1994).Google Scholar
  11. 11.
    L. Wei, M. Vaudin, C. S. Hwang, G. White, J. Xu, and A. J. Steckl, J. Mater. Res. 10:1889 (1995).Google Scholar
  12. 12.
    M. von Arx and P. O. Baltes, J. Microelectromech. Syst. 9:136 (2000).Google Scholar
  13. 13.
    K. Kurabayashi, M. Asheghi, M. Touzelbaev, and K. E. Goodson, J. Microelectromech. Syst. 8:180 (1999).Google Scholar
  14. 14.
    M. Asheghi, K. Kurabayashi, R. Kasnavi, J. Plummer, and K. E. Goodson, submitted for publication.Google Scholar
  15. 15.
    J. Callaway, Phys. Rev. 113:1046 (1959).Google Scholar
  16. 16.
    R. Berman, Thermal Conduction in Solids(Oxford University Press, Oxford, 1976).Google Scholar
  17. 17.
    J. M. Ziman, Electrons and Phonons(Oxford University Press, Oxford, 1960).Google Scholar
  18. 18.
    M. G. Holland, Phys. Rev. 132:2461 (1963).Google Scholar
  19. 19.
    M. A. Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, Phys. Rev. B Cond. Matter 56:9431 (1997).Google Scholar
  20. 20.
    J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, and C. J. Robinson, Phys. Rev. B Cond. Matter 50:3702 (1994).Google Scholar
  21. 21.
    J. E. Graebner, Diamond Relat. Mater. 5:1366 (1996).Google Scholar
  22. 22.
    K. E. Goodson, O. W. Käding, M. Rösler, and R. Zachai, J. Appl. Phys. 77:1385 (1995).Google Scholar
  23. 23.
    K. E. Goodson, J. Heat Transfer 118:279 (1996).Google Scholar
  24. 24.
    K. Plamann and D. Fournier, Phys. Stat. Sol. A 154:351 (1996).Google Scholar
  25. 25.
    H. Verhoeven, E. Boettger, A. Floter, H. Reiss, and R. Zachai, Diamond Relat. Mater. 6:298 (1997).Google Scholar
  26. 26.
    M. N. Touzelbaev and K. E. Goodson, Diamond Relat. Mater. 7:1 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • S. Uma
    • 1
  • A. D. McConnell
    • 1
  • M. Asheghi
    • 1
  • K. Kurabayashi
    • 2
  • K. E. Goodson
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordU.S.A
  2. 2.Mechanical Engineering and Applied Mechanics DepartmentUniversity of MichiganAnn ArborU.S.A

Personalised recommendations