Journal of Atmospheric Chemistry

, Volume 39, Issue 1, pp 37–64

GHOST – A Novel Airborne Gas Chromatograph for In Situ Measurements of Long-Lived Tracers in the Lower Stratosphere: Method and Applications

  • Oliver Bujok
  • Viceith Tan
  • Erich Klein
  • Ralf Nopper
  • Reimar Bauer
  • Andreas Engel
  • Marie-Theres Gerhards
  • Armin Afchine
  • Daniel S. McKenna
  • Ulrich Schmidt
  • Frank G. Wienhold
  • Horst Fischer
Article

Abstract

A novel fully-automated airborne gas chromatograph for in situmeasurements of long-lived stratospheric tracers hasbeen developed, combining the high selectivity of a megabore PLOTcapillary column with recently developed sampling and separationtechniques. The Gas cHromatograph for theObservation of Stratospheric Tracers (GHOST)has been successfully operated during three STREAM campaigns(Stratosphere TRoposphere Experiment byAirborne Measurement) onboard a Cessna Citation IIaircraft in two different modes: Either N2O andCF2Cl2(CFC-12) or CFC-12 and CFCl3 (CFC-11) have been measuredsimultaneously, with a time resolution of 2 min for both modes.Under flight conditions the instrument precision (1σ) forthese species is better than 0.9%, and the accuracy(1σ) is better than 2.0% of the tropospheric values ofall measured compounds. The detection limits (3σ) arebelow 28 ppb for N2O, 14 ppt for CFC-12, and 8 ppt forCFC-11, respectively, i.e., well below 10 % of the troposphericvalues of all measured compounds. Post-mission optimization of thechromatographic separation showed a possible enhancement of thetime resolution by up to a factor of 2, associated with acomparable increase in precision and detection limit. As test ofactual performance of GHOST results from an in-flight N2Ointercomparison with a tunable diode laser absorptionspectrometer (TDLAS) are presented. They yield an excellentagreement between both instruments. Furthermore, on the basis ofthe hitherto most extensive set of upper tropospheric and lowerstratospheric data, the relative stratospheric N22O lifetime isre-assessed. When referenced to the WMO reference CFC-11 lifetimeof 45 ± 7 years an N2O lifetime of 91 ± 15 yearsis derived, a value substantially smaller than the WMO referencelifetime of 120 years. Moreover, this value implies astratospheric N2O sink strength of 16.3 ± 2.7 Tg (N)yr−1 which is 30% larger than previous estimates.

long-lived tracers in situ gas chromatograph airborne measurements lowermost stratosphere N2O budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appenzeller, C., Davies, H. C., and Norton, W. A., 1996: Fragmentation of stratospheric intrusions, J. Geophys. Res. 101, 1435–1456.Google Scholar
  2. Baechmann, K. and Polzer, J., 1989: Determination of tropospheric phosgene and other halocarbons by capillary gas chromatography, J. Chromatogr. 481, 373–379.Google Scholar
  3. Ballschmiter, K., Mayer, P., and Class, T., 1986: Chemistry of organic traces in air, IV. analysis of C1-and C2-halocarbons in ambient air by cold trap injection and wide bore glass capillary gas chromatography, Fresenius Z. Anal. Chem. 323, 334–339.Google Scholar
  4. Bamber, D. J., Healey, P. G. W., Jones, B. M. R., Penkett, S. A., and Tuck, A. F., 1984: Vertical pro-files of tropospheric gases: chemical consequences of stratospheric intrusions, Atmos. Environ. 18, 1759–1766.Google Scholar
  5. Bauer, R., Engel, A., Franken, H., Klein, E., Kulessa, G., Schiller, C., Schmidt, U., Borchers, R., and Lee, J., 1994: Monitoring the vertical structure of the Arctic polar vortex over northern Scandinavia during EASOE: Regular N2O profile observations, Geophys. Res. Lett. 21, 1211–1214.Google Scholar
  6. Brauers, T., Aschmutat, U., Brandenburger, U., Dorn, H.-P., Hausmann, M., Hessling, M., Hofzumahaus, A., Holland, F., Plass-Dulmer, C., and Ehhalt, D. H., 1996: Intercomparison of tropospheric OH radical measurements by multiple folded long-path laser absorption and laser induced fluorescence, Geophys. Res. Lett. 23, 2545–2548.Google Scholar
  7. Bujok, O., Tan, V., Klein, E., Bauer, R., McKenna, D. S., Engel, A., and Schmidt, U., 1998: In-situ measurements of long-lived tracers in the tropopause region: A novel automated airborne gas chromatograph, in R. D. Bojkov and G. Visconti (eds), Atmospheric Ozone: Proceedings of the XVIII Quedriennal Ozone Symposium, L'Aquila, Italy, 12–21 September 1996, International Ozone Commission, pp. 477–480.Google Scholar
  8. Crutzen, P. J., 1970: The influence of nitrogen oxides on the atmospheric ozone content, Quart. J. R. Meteorol. Soc. 96, 320–325.Google Scholar
  9. Crutzen, P. J., 1971: Ozone production rates in oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res. 76, 7311–7327.Google Scholar
  10. Efron, B. and Tibshirani, R., 1991: Statistical data analysis in the computer age, Science 253, 390–395.Google Scholar
  11. Elkins, J. W., Thompson, T. M., Swanson, T. H., Butler, J. H., Hall, B. D., Cummings, S. O., Fisher, D. A., and Raffo, A. G., 1993: Decrease in the growth rates of atmospheric chlorofluorocarbon-11 and chlorofluorocarbon-12, Nature 364, 780–783.Google Scholar
  12. Elkins, J. W., Fahey, D. W., Gilligan, J. M., Dutton, G. S., Baring, T. J., Volk, C. M., Dunn, R. E., Myers, R. C., Montzka, S. A., Wamsley, P. R., Hayden, A. H., Butler, J. H., Thompson, T. M., Swanson, T. H., Dlugokencky, E. J., Novelli, P. C., Hurst, D. F., Lobert, J. M., Ciciora, S. J., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Fraser, P. J., Steele, L. P., and Lucarelli, M. P., 1996: Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere, Geophys. Res. Lett. 23, 347–350.Google Scholar
  13. Frank, H., Frank, W., Neves, H. J. C., and Englert, R., 1991: Automated trace analysis of airborne C1-and C2-halocarbons, Fresenius J. Anal. Chem. 340, 678–683.Google Scholar
  14. Grimsrud, E. P. and Knighton, W. B., 1982: Response of an electron capture detector to methyl iodide, Anal. Chem. 54, 565–572.Google Scholar
  15. Hofzumahaus, A., Aschmutat, U., Brandenberger, U., Brauers, T., Dorn, H.-P., Hausmann, M., Hessling, M., Holland, F., Plass-Dulmer, C., and Ehhalt, D. H., 1998: Intercomparison of tropospheric OH measurements by different laser techniques during the POPCORN campaign 1994, J. Atmos. Chem. 31, 227–246.Google Scholar
  16. Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L., 1995: Stratosphere-troposphere exchange, Rev. Geophys. 33, 403–439.Google Scholar
  17. Houghton, J. T., Filho, L. G. M., Bruce, J., Lee, H., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds), 1995: Climate Change: Climate Change 1994: The Science of Climate Change, Cambridge University Press, Cambridge.Google Scholar
  18. Kroeze, C., Mosier, A., and Bouwman, L., 1999: Closing the global N2O budget: A retrospective analysis 1500–1994, Glob. Biogeochem. Cycles 13, 1–8.Google Scholar
  19. Kuster, W. C., Goldan, P. D., and Fehsenfeld, F. C., 1981: Controlled environment portable gas chromatograph for in-situ aircraft or balloon-borne applications, J. Chromatogr. 205, 271–279.Google Scholar
  20. Miller, D. A. and Grimsrud, E. P., 1971: Correlation of electron capture response enhancements caused by oxygen with chemical structure for chlorinated hydrocarbons, Anal. Chem. 51, 851–859.Google Scholar
  21. Molina, M. J. and Rowland, F. S., 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalyzed destruction of ozone, Nature 249, 810–814.Google Scholar
  22. Newman, P. A. et al., 1996: Measurements of polar vortex air in the midlatitudes, J. Geophys. Res. 101, 12879–12891.Google Scholar
  23. Noij, T., Fabian, P., Borchers, R., Cramers, C., and Rijks, J., 1988a: Trace analysis of halogenated hydrocarbons in gaseous samples by capillary gas chromatography. Part II: Quantitative aspects and ECD calibration, Chromatographia 26, 149–156.Google Scholar
  24. Noij, T., Rijks, J. A., and Cramers, C. A., 1988b: Problems caused by the activity of Al2O3-PLOT columns in the capillary gas chromatographic analysis of volatile organic compounds, Chromatographia 26, 139–141.Google Scholar
  25. Plumb, R. A., 1996: A 'tropical pipe' model of stratospheric transport, J. Geophys. Res. 101, 3957–3972.Google Scholar
  26. Plumb, R. A. and Ko, M. K. W., 1992: Interrelationships between Mixing Ratios of Long-Lived Stratospheric Constituents, J. Geophys. Res. 97, 10145–10156.Google Scholar
  27. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, pp. 656–670.Google Scholar
  28. Savitzky, A. and Golay, M. J. E., 1964: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36, 1627–1639.Google Scholar
  29. Schauffler, S. M., Heidt, L. E., Pollock, W. H., Gilpin, T. M., Vedder, J. F., Solomon, S., Lueb, R. A., and Atlas, E. L., 1993: Measurements of halogenated organic compounds near the tropical tropopause, Geophys. Res. Lett. 20, 2567–2570.Google Scholar
  30. Schmidt, U., Bauer, R., Khedim, A., Klein, E., Kulessa, G., and Schiller, C., 1991: Profile observations of long-lived trace gases in the Arctic vortex, Geophys. Res. Lett. 4, 767–770.Google Scholar
  31. Schmidt, U., Bauer, R., Engel, A., Borchers, R., and Lee, J., 1994: The variation of available chlorine, Cly, in the Arctic polar vortex during EASOE, Geophys. Res. Lett. 21, 1215–1218.Google Scholar
  32. Schoeberl, M. R., Lait, L. R., Newman, P. A., and Rosenfield, J. E., 1992: The structure of the polar vortex, J. Geophys. Res. 97, 7859–7882.Google Scholar
  33. Schrimpf, W., Müller, K. P., Johnen, F. J., Lienaerts, K., and Rudolph, J., 1995: An optimized method for airborne peroxyacetyl nitrate (PAN) measurements, J. Atmos. Chem. 22, 303–317.Google Scholar
  34. Sievers, R. E., Phillips, M. P., Barkley, R. M., Wizner, M. A., Bollinger, M. J., Hutte, R. S., and Fehsenfeld, F. C., 1979: Selective electron-capture sensitization, J. Chromatogr. 186, 3–14.Google Scholar
  35. Simmonds, P. G., 1978: Direct determination of ambient carbon dioxide and nitroux oxide with a high temperature 63Ni electron-capture detector, J. Chromatogr. 166, 593–598.Google Scholar
  36. Simpson, C. F., 1976: Practical High Performance Liquid Chromatography, Heyden, London, pp. 13–14.Google Scholar
  37. Steinier, J., Termonia, Y., and Deltour, J., 1972: Comments on smoothing and differentiation of data by simplified least square procedure, Anal. Chem. 44, 1906–1909.Google Scholar
  38. Stolarski, R. S., and Cicerone, R. J., 1974: Stratospheric chlorine: A possible sink of ozone, Canad. J. Chem. 52, 1610–1615.Google Scholar
  39. Sturrock, G. A., Simmonds, P. G., and Nickless, G., 1993: Analysis of chlorofluorocarbon replacement compounds by capillary gas chromatography, J. Chromatogr. 648, 423–431.Google Scholar
  40. Trenberth, K. E. and Guillemot, C. J., 1994: The total mass of the atmosphere, J. Geophys. Res. 99, 23079–23088.Google Scholar
  41. Tyson, B. J., Arvesen, J. C., and O'Hara, D., 1978: Interhemispheric gradients of CF2Cl2, CFCl3, CCl4, and N2O, Geophys. Res. Lett. 5, 535.Google Scholar
  42. Volk, C. M., Elkins, J. W., Fahey, D. W., Dutton, G. S., Gilligan, J. M., Loewenstein, M., Podolske, J. R., and Chan, K. R., 1997: On the evaluation of source gas lifetimes from stratospheric observations, J. Geophys. Res. 102, 25543–25564.Google Scholar
  43. Volk, C. M., Elkins, J. W., Fahey, D. W., Salawitch, R. J., Dutton, G. S., Gilligan, J. M., Proffitt, M. H., Loewenstein, M., Podolske, J. R., Minschwaner, K., Margitan, J. J., and Chan, K. R., 1996: Quantifying transport between the tropical and mid-latitude lower stratosphere, Science 272, 1763–1768.Google Scholar
  44. Weiss, R. F., Keeling, C. D., and Craig, H., 1981: The determination of tropospheric nitrous oxide, J. Geophys. Res. 86, 7197–7202.Google Scholar
  45. Wentworth, W. E., Chen, E., and Freeman, R., 1971: Thermal electron attachment to nitrous oxide, J. Chem. Phys. 55, 2075–2078.Google Scholar
  46. Wienhold, F. G. et al., 1998: TRISTAR-a tracer in-situ TDLAS for atmospheric research, Appl. Phys. B 67, 411–417.Google Scholar
  47. WMO, 1995: Scientific Assessment of Ozone Depletion: 1994, Rep. 37, World Meteorological Organization, Global Ozone Res. and Monit. Proj., Geneva.Google Scholar
  48. WMO, 1999: Scientific Assessment of Ozone Depletion: 1998, Rep. 44, World Meteorological Organization, Global Ozone Res. and Monit. Proj., Geneva.Google Scholar
  49. Woodbridge, E. L., Elkins, J. W., Fahey, D. W., Heidt, L. E., Soloman, S., Baring, T. J., Gilpin, T. M., Pollock, W. H., Schauffler, S. M., Atlas, E. L., Loewenstein, M., Podolske, J. R., Webster, C. R., May, R. D., Gilligan, J. M., Montzka, S. A., Boering, K. A., and Salawitch, R. J., 1995: Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE II, J. Geophys. Res. 100, 3057–3064.Google Scholar
  50. Yoshida, N. and Toyoda, S., 2000: Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers, Nature 405, 330–334.Google Scholar
  51. de Zeeuw, J., de Nijs, R. C. M., and Henrich, L. T., 1987: Adsorption chromatography on PLOT columns: A new look at the future of capillary GC, J. Chromatogr. Sci. 25, 71–83.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Oliver Bujok
    • 1
  • Viceith Tan
    • 1
  • Erich Klein
    • 1
  • Ralf Nopper
    • 1
  • Reimar Bauer
    • 1
  • Andreas Engel
    • 1
    • 4
  • Marie-Theres Gerhards
    • 1
  • Armin Afchine
    • 1
  • Daniel S. McKenna
    • 1
  • Ulrich Schmidt
    • 1
    • 4
  • Frank G. Wienhold
    • 5
  • Horst Fischer
    • 5
  1. 1.Institut für Stratosphärische ChemieForschungszentrum JülichJülichGermany
  2. 2.VDI Technologiezentrum DüsseldorfGermany
  3. 3.Institut für Instrumentelle AnalytikGerhard-Mercator-UniversitätDuisburgGermany
  4. 4.Institut für Meteorologie und GeophysikJohann Wolfgang Goethe-UniversitätFrankfurtGermany
  5. 5.Abteilung LuftchemieMax Planck Institut für ChemieMainzGermany
  6. 6.Fraunhofer Institut für Physikalische Meß technikFreiburgGermany

Personalised recommendations