Climatic Change

, Volume 49, Issue 1–2, pp 105–128 | Cite as

Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin

  • H. Middelkoop
  • K. Daamen
  • D. Gellens
  • W. Grabs
  • J. C. J. Kwadijk
  • H. Lang
  • B. W. A. H. Parmet
  • B. Schädler
  • J. Schulla
  • K. Wilke

Abstract

The International Commission for the Hydrology of the Rhine basin (CHR) hascarried out a researchproject to assess the impact of climate change on the river flow conditionsin the Rhine basin. Along abottom-up line, different detailed hydrological models with hourly and dailytime steps have beendeveloped for representative sub-catchments of the Rhine basin. Along atop-down line, a water balancemodel for the entire Rhine basin has been developed, which calculates monthlydischarges and which wastested on the scale of the major tributaries of the Rhine. Using this set ofmodels, the effects of climatechange on the discharge regime in different parts of the Rhine basin werecalculated using the results ofUKHI and XCCC GCM-experiments. All models indicate the same trends in thechanges: higher winterdischarge as a result of intensified snow-melt and increased winterprecipitation, and lower summerdischarge due to the reduced winter snow storage and an increase ofevapotranspiration. When the resultsare considered in more detail, however, several differences show up. These canfirstly be attributed todifferent physical characteristics of the studied areas, but different spatialand temporal scales used in themodelling and different representations of several hydrological processes(e.g., evapotranspiration,snow melt) are responsible for the differences found as well. Climate changecan affect various socio-economicsectors. Higher temperatures may threaten winter tourism in the lower wintersport areas. The hydrologicalchanges will increase flood risk during winter, whilst low flows during summerwill adversely affectinland navigation, and reduce water availability for agriculture and industry.Balancing the required actionsagainst economic cost and the existing uncertainties in the climate changescenarios, a policy of `no-regretand flexibility' in water management planning and design is recommended, whereanticipatory adaptivemeasures in response to climate change impacts are undertaken in combinationwith ongoing activities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: 1986, ‘An Introduction to the European Hydrological System - Système Hydrologique Européen, SHE, 1. History and philosophy of a physically-based, distributed modeling system’, J. Hydrol. 87, 45–59.Google Scholar
  2. Anderson, E. A.: 1973, National Weather Service River Forecast System - Snow Accumulation and Ablation Model, National Oceanographic and Atmospheric Administration (NOAA), Tech. Mem., NWS-HYDRO-17, U.S. Department of Commerce, Silver Spring, MD.Google Scholar
  3. Arnell, N. W.: 1992, ‘Factors Controlling the Effects of Climate Change on River Flow Regimes in a Humid Temperate Environment’, J. Hydrol. 132, 321–277.Google Scholar
  4. Arnell, N. W.: 1996, Global Warming, River Flows and Water Resources, Wiley, Chichester.Google Scholar
  5. Arnell, N. W.: 1998, ‘Climate Change and Water Resources in Britain’, Clim. Change 39, 83–110.Google Scholar
  6. Bathurst, J. C. and O'Connell, P. E.: 1992, ‘Future of Distributed Modelling: The Système Hydrologique Européen’, Hydrol. Proc. 6, 265–277.Google Scholar
  7. Bergström, S.: 1976, Development and Application of a Conceptual Runoff Model for Scandinavian Catchments, Department of Water Resources Engineering, Lund Institute of Technology, Bulletin Series A 52, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.Google Scholar
  8. Bergström, S.: 1998, ‘Requirements on Climate Scenarios for Water Resources Impact Studies - A Nordic Perspective’, in Proceedings of the Second International Conference on Climate and Water, August 1998, Espoo - Finland, pp. 114–123.Google Scholar
  9. Bergström, S. and Lindström, G.: 1998, ‘A Swedish Perspective on Climate Change and Flood Risks’, in Second International RIBAMOD Workshop on Impact of Climate Change on Flooding and Sustainable River Management, IH Wallingford, 26–27 February.Google Scholar
  10. Beven, K. J.: 1989, ‘Changing Ideas in Hydrology: The Case of Physical-based Models’, J. Hydrol. 105, 157–172.Google Scholar
  11. Beven, K. J. and Kirkby, M. J.: 1979, ‘A Physically Based Variable Contributing Area Model of Basin Hydrology’, Hydrol. Sci. Bull. 24, 43–69.Google Scholar
  12. Beven, K. J., Kirby, M. J., Schofield, N., and Tagg, A. F.: 1984, ‘Testing a Physically Based Flood Forecasting Model (TOPMODEL) for Three U.K. Catchments’, J. Hydrol. 69, 119–143.Google Scholar
  13. Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Donigian, A. S., and Johanson, R. C.: 1993, Hydrological Simulation Program - Fortran (HSPF): Users Manual for Release 10, U.S. EPA Environmental Research Laboratory, Athens, Georgia.Google Scholar
  14. Bultot, F., Dupriez, G.L., and Gellens, D.: 1988, ‘Estimated Regime of Energy-Balance Components, Evapotranspiration and Soil Moisture for a Drainage Basin the Case of a CO2 Doubling’, Clim. Change 12, 39–56.Google Scholar
  15. Bultot, F., Gellens, D., Schädler, B., and Spreafico, M.: 1994, ‘Effects of Climate Change on Snow Accumulation and Melting in the Broye Catchment (Switzerland)’, Clim. Change 28, 339–363.Google Scholar
  16. De Laat, P. J. M.: 1992, ‘MUST, a Pseudo Steady-State Approach to Simulating Flow in Unsaturated Media’, ICID Bull. CIID 41, 49–60.Google Scholar
  17. De Lange, W. J.: 1991, A Groundwater Model of The Netherlands, Rijkswaterstaat, RIZA nota 90.066.Google Scholar
  18. Gellens, D. and Roulin, F.: 1998, ‘Streamflow Response of Belgian Catchments to IPCC Climate Change Scenarios’, J. Hydrol. 210, 242–258.Google Scholar
  19. Gleick, P. H.: 1987a, ‘The Development and Testing of a Water Balance Model for Climate Impact Assessment: The Sacramento Basin’, Water Resour. Res. 23, 6, 1049–1061.Google Scholar
  20. Gleick, P. H.: 1987b, ‘Regional Hydrologic Consequences of Increases in Atmospheric CO2 and Other Trace Gases’, Clim. Change 10, 137–161.Google Scholar
  21. Grabs, W., Daamen, K., Gellens, D., Kwadijk, J. C. J., Lang, H., Middelkoop, H., Parmet, B. W. A. H., Schädler, B., Schulla, J., and Wilke, K.: 1997, Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin, CHR-report I-16, CHR, Lelystad. IMPACT OF CLIMATE CHANGE AND WATER RESOURCES MANAGEMENT 127Google Scholar
  22. Gurts, J., Baltensweiler, A., Lang, H., Menzel., L., and Schulla., J.: 1997, Auswirkungen von klimatischen Variationen auf Wasserhaushalt und Abfluss im Flussgebiet des Rheins, Schlussbericht NFP 31, Zürich, Hochschulverlag AG.Google Scholar
  23. Hulme, M., Conway, D., Brown, O., and Barrow, E.: 1994, A 1961–1990 Baseline Climatology and Future Climate Change Scenarios for Great Britain and Europe. Part III: Climate Change Scenarios for Great Britain and Europe, Climate Research Unit, University of East Anglia, Norwich.Google Scholar
  24. IKSR: 1995, Grundlagen und Strategie zum Aktionsplan Hochwasser, IKSR, Koblenz.Google Scholar
  25. IPCC: 1996, Climate Change 1995; The Science of Climate Change, Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), University Press, Cambridge.Google Scholar
  26. Klemes, V.: 1986, ‘Operational Testing of Hydrological Simulation Models’,Hydrol. Sci. 31, 13–24.Google Scholar
  27. Kwadijk, J. C. J.: 1993, The Impact of Climate Change on the Discharge of the River Rhine, Ph.D. Thesis, Department of Physical Geography, Utrecht University, Netherlands Geographical Studies, 171.Google Scholar
  28. Kwadijk, J. C. J. and Middelkoop, H.: 1994, ‘Estimation of Climate Change on the Peak Discharge Probability of the River Rhine’, Clim. Change 27, 199–224.Google Scholar
  29. Kwadijk, J. C. J. and Rotmans, J.: 1995, ‘The Impact of Climate Change on the River Rhine: A Scenario Study’, Clim. Change 30, 397–425.Google Scholar
  30. Lawford, R.: 1998, ‘The GEWEX Continental-Scale International Project: Building a Bridge between Climate Science and Water Resources Management’, in Proceedings Second International Conference on Climate and Water, August 1998, Espoo - Finland, pp. 124–138.Google Scholar
  31. Leavesley, G. H.: 1994, ‘Modeling the Effects of Climate Change on Water Resources-A Review’, Clim. Change 28, 159–177.Google Scholar
  32. Liebscher, H.-J., Wilke, K., Krahe, P., Schultz, G., Schumann, A., Su, Z., Hamme, B., Funke, R., Hornbogen, M., Ott, M., Bardossy, A., and Plate, E.: 1995, Entwicklung eines mathematischen Modells zur Untersuchung des Einflusses von Klima-und Landnutzungsänderungen auf den Hoch-und Niedrigwasserabfluß im Einzugsgebiet der Mosel sowie Echtzeitvorhersage unter Verwendung von Fernerkundungstechniken, UBA Forschungsbericht Wasser 102 01 304, Bundesanstalt für Gewässerkunde Koblenz und Ruhruniversität Bochum, Lehrstuhl für Hydrologie, Wasserwirtschaft und Umwelttechnik Bochum.Google Scholar
  33. Middelkoop, H.: 1997, Embanked Floodplains in The Netherlands. Geomorphological Evolution over Various Time Scales, Ph.D. Thesis, Department of Physical Geography, Utrecht University, Netherlands Geographical Studies, 224.Google Scholar
  34. Mimikou, M., Kouvopoulos, Y., Cavadias, G., and Vayianos, N.: 1991, ‘Regional Hydrological Effects of Climate Change’, J. Hydrol. 125, 221–241.Google Scholar
  35. Mortsch, L. D.: 1998, ‘Assessing the Impact of Climate Change on the Great Lakes Shoreline Wetlands’, Clim. Change 40, 391–416.Google Scholar
  36. Panagoulia, D.: 1992, ‘Impacts of GISS-modelled Climate Changes on Catchment Hydrology’, Hydrol. Sci. 37, 141–163.Google Scholar
  37. Parmet, B. W. A. H., Kwadijk, J. C. J., and Raak, M.: 1995, ‘Impact of Climate Change on the Discharge of the River Rhine’, in Zwerver, S., Van Rompaey, R. S. A. R., Kok, M. T. J., and Berk, M. M. (eds.), Climate Change Research. Evaluations and Policy Implications, Proceedings of the International Climate Change Conference, December 1995, Maastricht, The Netherlands, Studies in Environmental Science 65B, Elsevier, Amsterdam, pp. 911–918.Google Scholar
  38. Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F. B.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, Max Planck Institut für Meteorologie, Report 47, Hamburg.Google Scholar
  39. Van Deursen, W. P. A. and Kwadijk, J. C. J.: 1993, ‘Rhineflow: An Integrated GIS Water Balance Model for the River Rhine’, in Kovar, K. and Nachtnebel, H. P. (eds.), Application of Geographic Information Systems in Hydrology and Water Resources Management, Proceedings of the Conference on HYDROGIS, Vienna, Austria, IHAS publication 211, pp. 507–519.Google Scholar
  40. Warmerdam, P. M. M., Kole, J. W., and Stricker, J. N. M.: 1993, ‘Rainfall-Runoff Modelling in the Research Area of the Hupselse Beek, The Netherlands’, in Proceedings of the International Symposium on Runoff and Sediment Yield Modelling, Warsaw, 1993.Google Scholar
  41. Wigley, T. M. L. and Raper, S. C. B.: 1992, Implications for Climate and Sea Level of Revised IPCC Emission Scenarios, Nature 357, 293–300. (Received 26 August 1999; in revised form 14 August 2000)Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • H. Middelkoop
    • 1
  • K. Daamen
    • 2
  • D. Gellens
    • 3
  • W. Grabs
    • 2
  • J. C. J. Kwadijk
    • 4
  • H. Lang
    • 5
  • B. W. A. H. Parmet
    • 1
  • B. Schädler
    • 6
  • J. Schulla
    • 5
  • K. Wilke
    • 2
  1. 1.Institute for Inland Water Management and Waste Water Treatment (RIZA)ArnhemThe Netherlands
  2. 2.Bundesanstalt für Gewässerkunde (BfG)KoblenzGermany
  3. 3.Institut Royal Météorologique de Belgique (IRMB)BrusselsBelgium
  4. 4.WL/Delft HydraulicsDelftThe Netherlands
  5. 5.ETHZürichSwitzerland
  6. 6.Landeshydrologie und -geologie (LHG)BernSwitzerland

Personalised recommendations