Journal of Bioenergetics and Biomembranes

, Volume 33, Issue 2, pp 119–126 | Cite as

Under Conditions of Insufficient Permeability of VDAC1, External NADH May Use the TOM Complex Channel to Cross the Outer Membrane of Saccharomyces cerevisiae Mitochondria

  • Nina Antos
  • Olgierd Stobienia
  • Małgorzata Budzińska
  • Hanna Kmita
Article

Abstract

Thus far, only three channel-forming activities have been identified in the outer membrane of the yeast Saccharomyces cerevisiae mitochondria. Two of them, namely the TOM complex channel (translocase of the outer membrane) and the PSC (peptide-sensitive channel) participate in protein translocation and are probably identical, whereas a channel-forming protein called VDAC (voltage-dependent anion channel) serves as the major pathway for metabolites. The VDAC is present in two isoforms (VDAC1 and VDAC2) of which only VDAC1 has been shown to display channel-forming activity. Moreover, the permeability of VDAC1 has been reported to be limited in uncoupled mitochondria of S. cerevisiae. The presented data indicate that in S. cerevisiae-uncoupled mitochondria, external NADH, applied at higher concentrations (above 50 nmoles per 0.1 mg of mitochondrial protein), may use the TOM complex channel, besides VDAC1, to cross the outer membrane. Thus, the permeability of VDAC1 could be a limiting step in transport of external NADH across the outer membrane and might be supplemented by the TOM complex channel.

Saccharomyces cerevisiae mitochondria external NADH transport isoform1 of voltage-dependent anion channel (VDAC1) TOM complex channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Benz, R. (1994). Biochim. Biophys. Acta 1197, 167–196.Google Scholar
  2. Benz, R., Janko, K., Boos, W., and Lauger, P. (1978). Biochim. Biophys. Acta 511, 305–319.Google Scholar
  3. Blachly-Dyson, E., Zambrowicz, E. B., Yu., W. H., Adams, V., McCabe, E. R. B., Adelman, J., Colombini, M., and Forte, M. (1993). J. Biol. Chem. 268, 1835–1841.Google Scholar
  4. Blachly-Dyson, E., Song, J., Wolfgang, W. J., Colombini, M., and Forte, M. (1997). Mol. Cell. Biol. 17, 5727–5738.Google Scholar
  5. Colombini, M. (1979). Nature (London) 279, 643–645.Google Scholar
  6. Colombini, M., Blachly-Dyson, E., and Forte, M. (1996). In Ion Channels: VDAC, A Channel in the Outer Mitochondrial Membrane (Narahashi, T., ed.), Plenum Press, New York, pp. 169–201.Google Scholar
  7. Daum, G., Bohni, P. C., and Schatz, G. (1982). J. Biol. Chem. 257, 13028–13033.Google Scholar
  8. Dekker, P. J., Martin, F., Maarse, A. C., Bmer, U., Müller, H., Guiard, B., Meijer, M., Rassow, J., and Pfanner, N. (1997). EMBO J. 16, 5408–5419.Google Scholar
  9. De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F. (1987). Biochim. Biophys. Acta 894, 109–119.Google Scholar
  10. De Vries, S. and Marres, C. A. M. (1987). Biochim. Biophys. Acta 895, 205–239.Google Scholar
  11. Dihanich, M., Suda, K., and Schatz, G. (1987). EMBO J. 6, 723–728.Google Scholar
  12. Dihanich, M., Schmid, A., Oppliger, W., and Benz, R. (1989). Eur. J. Biochem. 181, 703–708.Google Scholar
  13. Douce, R., Bourguignon, J., Brouquisse, R., and Neuberger, M. (1984). Methods Enzymol. 148, 403–415.Google Scholar
  14. Elkeles, A., Breiman, A., and Zizi, M. (1997). J. Biol. Chem. 272, 6252–6260.Google Scholar
  15. Fevre, F., Chich, J. F., Lauquin, G. J.-M., Henry, J. P., and Thieffry, M. (1990). FEBS Lett. 262, 201–204.Google Scholar
  16. Guo, X. J. and Lauquin, G. J.-M. (1986). EBEC Rep. 4, 292.Google Scholar
  17. Hill, K., Model, K., Ryan, M. T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Nature (London) 395, 516–521.Google Scholar
  18. Juin, P., Thieffry, M., Henry, J.-P., and Vallette, F. M. (1997). J. Biol. Chem. 272, 6044–6050.Google Scholar
  19. Kamo, N., Maratsugu, M., Hongoh, R., and Kobatake, Y. J. (1979). J. Membr. Biol. 49, 105–121.Google Scholar
  20. Kmita, H., Stobienia, O., and Michejda, J. (1999). Acta Biochim. Polon. 46, 991–1000.Google Scholar
  21. Kmita, H. and Budzínska, M. (2000). Biochim. Biophys. Acta 1509, 86–94.Google Scholar
  22. Kuenkele, K.-P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998a). Cell 93, 1009–1019.Google Scholar
  23. Kuenkele, K.-P., Juin, P., Pompa, C., Nargang, F. E., Henry, J.-P., Neupert, W., Lill, R., and Thieffry, M. (1998b). J. Biol. Chem. 273, 31032–31039.Google Scholar
  24. Lämmli, U. K. (1970). Nature (London) 227, 680–685.Google Scholar
  25. Lee, A. C., Zizi, M., and Colombini, M. (1994). J. Biol. Chem. 269, 30974–30980.Google Scholar
  26. Lee, A. C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). J. Membr. Biol. 161, 173–181.Google Scholar
  27. Lill, R. and Neupert, W. (1996). Trends Cell Biol. 6, 56–61.Google Scholar
  28. Mayer, A., Neupert, W., and Lill, R. (1995). Cell 80, 127–137.Google Scholar
  29. Michejda, J., Guo, X. J., and Lauquin, G. J.-M. (1990). Biochem. Biophys. Res. Commun. 171, 354–361.Google Scholar
  30. Michejda, J., Kmita, H., Stobienia, O., Budzińska, M., and Lauquin, G. J.-M. (1994). In Molecular Biology of Mitochondrial Transport System: Restriction of Metabolite Permeation through the Outer Mitochondrial Membrane of Porin-Deficient Yeast Mutant (Forte, M. and Colombini, M., eds.), Springer-Verlag, Heidelberg, pp. 341–356.Google Scholar
  31. Rapaport, D., Neupert, W., and Lill, R. (1997). J. Biol. Chem. 272, 18725–18731.Google Scholar
  32. Rapaport, D., Mayer, A., Neupert, W., and Lill, R. (1998). J. Biol. Chem. 273, 8806–8813.Google Scholar
  33. Sampson, M. J., Lovell, R. S., and Craigen, W. J. (1997). J. Biol. Chem. 272, 18966–18973.Google Scholar
  34. Schein, S. J., Colombini, M., and Finkelstein, A. V. (1976). J. Membr. Biol. 30, 99–120.Google Scholar
  35. Sirrenberg, Ch., Endres, M., Becker, K., Bauer, M. F., Walther, E., Neupert, W., and Brunner, M. (1997). J. Biol. Chem. 272, 29963–29966.Google Scholar
  36. Tarassov, I., Entelis, N., and Martin, R. P. (1995). J. Mol. Biol. 245, 315–323.Google Scholar
  37. Thieffry, M., Chich, J. F., Goldschmidt, D., and Henry, J. P. (1988). EMBO J. 7, 1449–1454.Google Scholar
  38. Thieffry, M., Fevre, F., Pelleschi, M., and Henry, J.-P. (1994). In Molecular Biology of Mitochondrial Transport Systems: The Mitochondrial Outer Membrane Contains at Least Two Distinct Channels (Forte, M. and Colombini, M., eds.), Springer-Verlag, Berlin.Google Scholar
  39. Vallette, F. M., Juin, P., Peleschi, M., and Henry, J.-P. (1994). J. Biol. Chem. 269, 13367–13374.Google Scholar
  40. Voos, W., Gambill, B. D., Laloraya, S., Ang, D., Graig, E. A., and Pfenner, N. (1994). Mol. Cell. Biol. 14, 6627–6634.Google Scholar
  41. Wienhues, U., Koll, H., Becker, K., Guiard, B., and Hartl, F.-U. (1992). In Protein Targeting. Practical Approach: Protein Targeting to Mitochondria (Magge, A. and Wileman, T., eds.), Oxford University Press, London pp. 136–159.Google Scholar
  42. Xu, X., Decker, W., Sampson, M. J., Craigen, W. J., and Colombini, M. (1999). J. Membr. Biol. 170, 89–102.Google Scholar
  43. Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M. (1994). J. Biol. Chem. 269, 1614–1616.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Nina Antos
  • Olgierd Stobienia
  • Małgorzata Budzińska
  • Hanna Kmita

There are no affiliations available

Personalised recommendations