Plant Molecular Biology

, Volume 45, Issue 4, pp 387–398 | Cite as

Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia

  • Julie Hofer
  • Campbell Gourlay
  • Anthony Michael
  • T.H. Noel Ellis

Abstract

Differences in knotted1-like (knox) gene expression may account for some of the diversity of leaf forms seen in nature. Class 1 knox genes are expressed in the compound leaf primordia of tomato but not in the simple leaf primordia of a range of species examined so far. In order to test the hypothesis that all compound leaves differ from simple leaves in this way, we isolated a class 1 knox cDNA from pea, Pskn1 (Pisum sativum knotted1) and examined its expression pattern. The encoded homeodomain of Pskn1 shares 88% identical residues with KNOTTED1 from maize and an adjacent ELK domain is present. The protein sequence of PSKN1 is 69% identical to TKN2, its nearest related sequence in tomato. Unlike TKn2, Pskn1 was not expressed in newly initiated compound leaves. The expression pattern of Pskn1 resembled those of other class 1 knox genes described in maize and Arabidopsis. Transcripts were detected in the shoot apical meristem and developing vasculature of the vegetative shoot, but expression was not detected in newly initiated and developing compound leaf primordia. The same pattern of expression was observed in the afila mutant, which is characterised by highly ramified compound leaves. Our results suggest that tomato and pea use different developmental processes in the generation of their compound leaves.

compound leaf homeobox pea plant development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K.D. and Sussex, I.M. 1995. Falsiflora and anantha control early stages of floral meristem development in tomato (Lycopersicon esculentum Mill.). Planta 200: 254-264.Google Scholar
  2. Arumingtyas, E.L., Floyd, R.S., Gregory, M.J. and Murfet, I.C. 1992. Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24: 17-31.Google Scholar
  3. Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. and Morelli, G. 1995. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121: 4171-4182.Google Scholar
  4. Barton, M.K. and Poethig, R.S. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823-831.Google Scholar
  5. Bellmann, R. and Werr, W. 1992. Zmhox1a, the product of a novel maize homeobox gene, interacts with the Shrunken 26 bp feedback control element. EMBO J. 11: 3367-3374.Google Scholar
  6. Chen, J.J., Janssen, B.J., Williams, A. and Sinha, N. 1997. A gene fusion at the homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289-1304.Google Scholar
  7. Coen, E.S., Romero, J.M., Doyle, S., Elliot, R., Murphy, G. and Carpenter, R. 1990. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.Google Scholar
  8. Dengler, N.G. 1984. Comparison of leaf development in normal ( C / C ), entire (e/e), and lanceolate (La/ C ) plants of tomato, Lycopersicon esculentum ‘Ailsa Craig’. Bot. Gaz. 145: 66-77.Google Scholar
  9. Ellis, T.H.N., Davies, D.R., Castleton, J.A. and Bedford, I.D. 1984. The organization and genetics of rDNA length variants in peas. Chromosoma91: 74-81.Google Scholar
  10. Endrizzi, K., Moussain, B., Haecker, A., Levin, J.Z. and Laux, T. 1995. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10: 967-979.Google Scholar
  11. Fowler, J.E., Muehlbauer, G.J. and Freeling, M. 1995. Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics 143: 489-503.Google Scholar
  12. Freeling, M. 1992. A conceptual framework for maize leaf development. Dev. Biol. 153: 44-58.Google Scholar
  13. Freeling, M. and Hake, S. 1985. Developmental genetics of mutants that specify knotted leaves in maize. Genetics 111: 617-634.Google Scholar
  14. Giles, J.E., Villani, P.J. and DeMason D.A. 1998. A class 1 knox full-length cDNA from pea (Pisum sativum) shoot tips. Plant Physiol. 117: 1125.Google Scholar
  15. Goldenberg, J.B. 1965. ‘afila’, a new mutation in pea (Pisum sativum L.). Bol. Genet. 1: 27-28.Google Scholar
  16. Gourlay, C.W., Hofer, J.M.I. and Ellis, T.H.N. 2000. Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA and TENDRIL-LESS.Plant Cell 12: 1279-1294.Google Scholar
  17. Hall, K.J., Parker, J.S., Ellis, T.H.N., Turner, L., Knox, M.R., Hofer, J.M.I., Lu, J., Ferrandiz, C., Hunter, P.J., Taylor, J.D. and Baird, K. 1997. The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40: 755-769.Google Scholar
  18. Hareven, D., Gutfinger, T., Parnis, A., Eshed, Y. and Lifschitz, E. 1995. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84: 735-744.Google Scholar
  19. Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A. and Ellis, N. 1997. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7: 581-587.Google Scholar
  20. Hofer, J.M.I and Ellis, T.H.N. 1998. The genetic control of patterning in pea leaves. Trends Plant Sci. 3: 439-444.Google Scholar
  21. Jackson, D., Veit, B. and Hake, S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413.Google Scholar
  22. Janssen, B.J., Lund, L. and Sinha, N. 1998. Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol. 117: 771-786.Google Scholar
  23. Jørgensen, J., Grønlund, M., Pallisgaard, N., Larsen, K., Marcker, K.A. and Jensen, E.Ø. 1999. A new class of plant homeobox genes is expressed in specific regions of determinate symbiotic root nodules. Plant Mol. Biol. 40: 65-77.Google Scholar
  24. Kawahara, R., Komamine, A. and Fukuda, H. 1995. Isolation and characterisation of homeobox-containing genes of carrot. Plant Mol. Biol. 27: 155-164.Google Scholar
  25. Kerstetter, R., Vollbrecht, E., Lowe, B., Veit, B., Yamaguchi, J. and Hake, S. 1994. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6: 1877-1887.Google Scholar
  26. Kerstetter, R.A., Maudencia-Chingcuanco, D., Smith, L.G. and Hake, S. 1997. Loss of function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124: 3045-3054.Google Scholar
  27. Koltai, H. and Bird, D.M. 2000. Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant J. 22: 455-459.Google Scholar
  28. Kujala, V. 1953. Felderbse bei welcher die ganze Blattspreite in Ranken umgewandelt ist. Arch. Soc. Zool. Bot. Fenn. 8: 44-45.Google Scholar
  29. Laucou, V., Haurogné, K., Ellis, N. and Rameau, C. 1998. Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor. Appl. Genet. 97: 905-915.Google Scholar
  30. Lawrence, P.A. and Morata, G. 1994. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 78: 181-189.Google Scholar
  31. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. 1994. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859-1876.Google Scholar
  32. Lohmer, S., Maddaloni, M., Motto, M., Salamini, F. and Thompson, R.D. 1993. Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence. Plant Cell 5: 65-73.Google Scholar
  33. Long, J.A., Moan, E.I., Medford, J.I. and Burton, K.M. 1995. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-69.Google Scholar
  34. Lu, P., Porat, R., Nadeau, J.A., and O'Neill, S.D. 1995 a. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8: 2155-2168.Google Scholar
  35. Lu, B., Villani, P.J., Watson, J.C., DeMason, D.A. and Cooke, T.J. 1995b. The control of pinna morphology in wildtype and mutant leaves of the garden pea (Pisum sativum L.). Int. J. Plant Sci. 157: 659-673.Google Scholar
  36. Ma, H., McMullen, M.D. and Finer, J.J. 1994. Identification of a homeobox-containing gene with enhanced expression during soybean (Glycine max L.) somatic embryo development. Plant Mol. Biol. 24: 465-473.Google Scholar
  37. Mann, R.S. and Affolter, M. 1998. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8: 423-429.Google Scholar
  38. McConnell, J.R. and Barton, M.K. 1998. Leaf polarity and meristem formation in Arabidopsis. Development 125: 2935-2942.Google Scholar
  39. McGinnis, W., Levine, M.S., Hafen, E., Kuroiwa, A. and Gehring, W.J. 1984. A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and bithorax complexes. Nature 308: 428-433.Google Scholar
  40. Meicenheimer, R.D., Muehlbauer, F.J., Hindman, J.L. and Gritton, E.T. 1983. Meristem characteristics of genetically modified pea (Pisum sativum) leaf primordia. Can. J. Bot. 61: 3430-3437.Google Scholar
  41. Michael, A.J., Hofer, J.M.I. and Ellis, T.H.N. 1995. Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30: 1051-1058.Google Scholar
  42. Molinero-Rosales, N., Jamilena, M., Zurita, S., Gómez, P., Capel, J. and Lozano, R. 1999. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20: 685-693.Google Scholar
  43. Parnis, A., Cohen, O., Gutfinger, T., Hareven, D., Zamir, D. and Lifschitz, E. 1997. The dominant development mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a knotted gene. Plant Cell 9: 2143-2158.Google Scholar
  44. Pnueli, L., Carmel-Goren, L., Hareven, D., tGutfinger, T., Alvarez, J., Ganal, M., Zamir, D. and Lifschitz, E. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125: 1979-1989.Google Scholar
  45. Rameau, C., Denoue, D., Fraval, F., Haurogne, K., Josserand, J., Laucou, V., Batge, S. and Murfet, I.C. 1998. Genetic mapping in pea. 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theor. Appl. Genet. 97: 916-928.Google Scholar
  46. Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G.W. and Fischer, R.L. 1995. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83: 735-742.Google Scholar
  47. Ruberti, I., Sessa, G., Luchetti, S. and Morelli, G. 1991. A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J. 10: 1787-1791.Google Scholar
  48. Scanlon, M.J., Schneeberger, R.G. and Freeling, M. 1995. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122: 1683-1691.Google Scholar
  49. Schneeberger, R.G., Becraft, P.W., Hake, S. and Freeling, M. 1995. Ectopic expression of the knox homeobox gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 9: 2292-2304.Google Scholar
  50. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., Herskowitz, I. and Kahmann, R. 1990. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60: 295-306.Google Scholar
  51. Scott, M.P. and Weiner, A.J. 1984. Structural relationships among genes that control development: sequence homology between the antennapedia, ultrabithorax and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. USA 81: 4115-4119.Google Scholar
  52. Serikawa, K.A., Martinez-Laborda, A. and Zambryski, P. 1995. Three kn1-like homeobox genes in Arabidopsis thaliana. Plant Mol. Biol. 32: 673-683.Google Scholar
  53. Shenk, M.A., Bode, H.R. and Steele, R.E. 1993. Expression of Cnox-2, a HOM/HOX homeobox gene in hydra, is correlated with axial pattern formation. Development 117: 657-667.Google Scholar
  54. Sinha, N.R., Williams, R.E. and Hake, S. 1993. Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 7: 787-795.Google Scholar
  55. Smith, L.J. and Hake, S. 1993. Molecular genetic approaches to leaf development: Knotted and beyond. Can. J. Bot. 72: 717-625.Google Scholar
  56. Smith, L.G., Greene, B., Veit, B. and Hake, S. 1992. A dominant mutation in the maize homeobox gene, Knotted1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21-30.Google Scholar
  57. Southern, E.M. 1979. Gel electrophoresis of restriction fragments. Meth. Enzymol. 68: 152-176.Google Scholar
  58. Timmermans M.C.P., Hudson, A., Becraft, P.W. and Nelson, T. 1999. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284: 151-153.Google Scholar
  59. Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M. and Langdale, J.A. 1999. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284: 154-156.Google Scholar
  60. Villani P.J. and DeMason, D.A. 1997. Roles of the af and tl genes in pea leaf morphogenesis: characterisation of the double mutant (afaftltl). Am. J. Bot. 84: 1323-1336.Google Scholar
  61. Villani, P.J. and DeMason, D.A. 2000. Roles of the af and tl genes in pea leaf morphogenesis: shoot ontogeny and leaf development of the heterozygotes. Ann. Bot. 85: 123-135.Google Scholar
  62. Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. 1991. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350: 241-243.Google Scholar
  63. Waites, R., Selvadurai, H.R.N., Oliver, I.R. and Hudson, A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789.Google Scholar
  64. Wang, L. and Wessler, S.R. 1998. Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. Plant Cell 10: 1733-1745.Google Scholar
  65. Weeden, N.F., Ellis, T.H.N., Timmerman-Vaughan, G.M., Swiecicki, W.K., Rozov, S.M. and Berdnikov, V.A. 1998. A consensus linkage map for Pisum sativum. Pisum Genet. 30: 1-4.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Julie Hofer
    • 1
  • Campbell Gourlay
    • 1
  • Anthony Michael
    • 1
  • T.H. Noel Ellis
    • 1
  1. 1.Department of Applied GeneticsJohn Innes Centre, Colney LaneNorwichUK

Personalised recommendations