Advertisement

Acta Applicandae Mathematica

, Volume 63, Issue 1–3, pp 79–87 | Cite as

Bell Numbers, Log-Concavity, and Log-Convexity

  • Nobuhiro Asai
  • Izumi Kubo
  • Hui-Hsiung Kuo
Article

Abstract

Let {b k (n)}n=0 be the Bell numbers of order k. It is proved that the sequence {b k (n)/n!}n=0 is log-concave and the sequence {b k (n)}n=0 is log-convex, or equivalently, the following inequalities hold for all n⩾0,
$$1 \leqslant \frac{{b_k (n + 2)b_k (n)}}{{b_k (n + 1)^2 }} \leqslant \frac{{n + 2}}{{n + 1}}$$
. Let {α(n)}n=0 be a sequence of positive numbers with α(0)=1. We show that if {α(n)}n=0 is log-convex, then α(n)α(m)⩽α(n+m), ∀n,m⩾0. On the other hand, if {α(n)/n!} n=0 is log-concave, then
$$\alpha (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)\alpha (n)\alpha (m),{\text{ }}\forall n,m \geqslant 0$$
. In particular, we have the following inequalities for the Bell numbers
$$b_k (n)b_k (m) \leqslant b_k (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)b_k (n)b_k (m),{\text{ }}\forall n,m \geqslant 0$$
. Then we apply these results to characterization theorems for CKS-space in white noise distribution theory.
Bell numbers log-concavity log-convexity CKS-space characterization theorem white noise distribution theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asai, N., Kubo, I. and Kuo, H.-H.: General characterization theorems and intrinsic topologies in white noise analysis, Preprint, 1998.Google Scholar
  2. 2.
    Bender, E. A. and Canfield, E. R.: Log-concavity and related properties of the cycle index polynomials, J. Combin. Theory A 74(1996), 57–70.Google Scholar
  3. 3.
    Canfield, E. R.: Engel's inequality for Bell numbers, J. Combin. Theory A 72(1995), 184–187.Google Scholar
  4. 4.
    Cochran, W. G., Kuo, H.-H. and Sengupta, A.: A new class of white noise generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(1998), 43–67.Google Scholar
  5. 5.
    Engel, K.: On the average rank of an element in a filter of the partition lattice, J. Combin. Theory A 65(1994), 67–78.Google Scholar
  6. 6.
    Kubo, I.: On characterization theorems for CKS-spaces in white noise analysis, Preprint, 1998.Google Scholar
  7. 7.
    Kubo, I., Kuo, H.-H. and Sengupta, A.: White noise analysis on a new space of Hida distributions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(1999), 315–335.Google Scholar
  8. 8.
    Kuo, H.-H.: White Noise Distribution Theory, CRC Press, Boca Raton, 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Nobuhiro Asai
    • 1
  • Izumi Kubo
    • 2
  • Hui-Hsiung Kuo
    • 3
  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Department of Mathematics, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Department of MathematicsLouisiana State UniversityBaton RougeU.S.A.

Personalised recommendations