Plant Growth Regulation

, Volume 32, Issue 2–3, pp 315–327 | Cite as

Degradation of cytokinins by cytokinin oxidases in plants

  • P. Galuszka
  • I. Frébort
  • M. Šebela
  • P. Peč


The degradation metabolism of cytokinins is an important process that controls the levels of cytokinin active forms and their distribution in plant tissues. It appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This review attempts to collate the limited information available about this enzyme and introduce new facts, obtained in our laboratory, concerning the mechanism of degradation of cytokinins bearing unsaturated isoprene side chains. However, complete clarification of the effects of cytokinin oxidase on cytokinin regulation and its molecular and biochemical properties will be dependent upon the purification of the protein with cytokinin oxidase activity to homogeneity and progress in the development of requisite molecular probes.

Cytokinin oxidase Cytokinins Degradation Dehydrogenation Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi D.E., Morris R.O., Hinz R., Mischke B.S., Kosuge T., Garfinkel D.J. et al. 1983. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80: 407-411.Google Scholar
  2. Armstrong D.J. 1994. Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok D.W.S. and Mok M.C. (eds), Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, USA, pp. 139-154.Google Scholar
  3. Armstrong D. and Firtel R.A. 1989. Cytokinin oxidase activity in the cellular slime mold, Dictyostelium discoideum. Dev. Biol. 136: 491-499.Google Scholar
  4. Auer C., Motyka V., Brezinová A. and Kamínek M. 1999. Endogenous cytokinin accumulation and cytokinin oxidase activity during shoot organogenesis of Petunia hybrida. Physiol. Plant 105: 141-147.Google Scholar
  5. Bray R.C. 1975. Xanthine oxidase. In: Boyer P.D. (ed.), The enzymes. Academic Press, New York, USA, pp. 299-412.Google Scholar
  6. Brownlee B.G., Hall R.H. and Whitty C.D. 1975. 3-Methyl-2-butenal: An enzymatic degradation product of the cytokinin, N6-isopentenyladenine. Can. J. Biochem. 53: 37-41.Google Scholar
  7. Burch L.R. and Horgan R. 1989. The purification of cytokinin oxidase from Zea mays kernels. Phytochemistry 28: 1313-1319.Google Scholar
  8. Burch L.R. and Horgan R. 1992. Cytokinin oxidase and the degradative metabolism of cytokinins. In: Kamínek M., Mok D.W.S. and Zažímalová E. (eds), Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, The Netherlands, pp. 29-32.Google Scholar
  9. Burrows W.J. and Leworty D.P. 1976. Metabolism of N,N8-diphenylurea by cytokinin-dependent tobacco callus: identification of the glucoside. Biochem. Biophys. Res. Commun. 70: 1109-1114.Google Scholar
  10. Chatfield J.M. and Armstrong D.J. 1987. Cytokinin oxidase from Phaseolus vulgaris callus tissues. Plant Physiol. 84: 726-731.Google Scholar
  11. Chatfield J.M. and Armstrong D.J. 1988. Cytokinin oxidase activity from Phaseolus vulgaris callus tissues. Affinity for concanavalin A. Plant Physiol. 88: 245-247.Google Scholar
  12. Chatfield J.M. and Armstrong D.J. 1986. Regulation of cytokinin oxidase activity in callus tissue of Phaseolus vulgaris L. cv Great northern. Plant Physiol. 80: 493-499.Google Scholar
  13. Cheikh N.C. and Jones R.J. 1994. Disruption of kernel growth and development by heat stress: role of cytokinin/ABA balance. Plant Physiol. 106: 45-51.Google Scholar
  14. Crespi M., Verecke D., Temmerman W., van Montagu M. and Desomer J. 1994. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 176: 2492-2501.Google Scholar
  15. Dietrich J.T., Kamínek M., Blevins D.G., Reinbott T.M. and Morris R.O. 1995. Changes in cytokinins and cytokinin oxidase activity in developing maize kernels and the effects of exogenous cytokinin on kernel development. Plant Physiol. Biochem. 33: 327-336.Google Scholar
  16. Doree M. and Guern J. 1973. Short-term metabolism of some exogenous cytokinins in Acer pseudoplatanus cells. Biochim. Biophys. Acta. 304: 611-619.Google Scholar
  17. Eklöf S., Astot C., Moritz T., Blackwell J., Olsson O. and Sandberg G. 1996. Cytokinin metabolites and gradients in wild type and transgenic tobacco with moderate cytokinin overproduction. Physiol. Plant 98: 333-344.Google Scholar
  18. Eklöf S., Astot C., Blackwell J., Moritz T., Olsson O. and Sandberg G. 1997. Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell. Physiol. 38: 225-235.Google Scholar
  19. Entsch B., Parker C.W. and Letham D.S. 1983. An enzyme from lupine seeds forming alanine derivatives of cytokinins. Phytochemistry 22: 375-381.Google Scholar
  20. Fox J.E. 1992. Molecular modeling of cytokinins and the CBF-1 receptor. In: Kamínek M., Mok D.W.S. and Zažímalová E. (eds), Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, The Netherlands, pp. 127-132.Google Scholar
  21. Frébort I., Galuszka P., Šebela M., Strnad M. and Peč P. 1999. Cytokinin oxidase (or cytokinin dehydrogenase?) from wheat: purification, characterization and evidence for dehydrogenation mechanism of the enzyme reaction. Biol. Plant 42: S119.Google Scholar
  22. Galuszka P., Frébort I. and Peč P. 1998. Cytokinin oxidase or dehydrogenase?. In: Strnad M., Lenobel R. and Rolčík J. (eds), Abstracts of 8th Physiological Days., Olomouc, Czech Republic, pp. 72-73.Google Scholar
  23. Galuszka P., Šebela M., Luhová L., Zajoncová L., Frébort I., Strnad M. et al. 1998. Cytokinins as inhibitors of plant amine oxidase. J. Enz. Inhib. 13: 457-463.Google Scholar
  24. Gerhauser D. and Bopp M. 1990. Cytokinin oxidases in mosses 2. Metabolism of of kinetin and benzyladenine in vitro. J. Plant Physiol. 135: 714-718.Google Scholar
  25. Goethals K., Verecke D., Temmerman W., Maes T., Kalkus J., Simon-Mateo C. et al. 1995. Cytokinin production by the phytopathogenic bacterium Rhodococcus fascians. Med. Fac. Land-Bouw. University of Gent 60/4a: 1553-1558.Google Scholar
  26. Hare P.D. and van Staden J. 1994. Cytokinin oxidase: Biochemical features and physiological significance. Physiol. Plant 91: 128-136.Google Scholar
  27. Henson I.E. 1978. Types, formation and metabolism of cytokinins in leaves of Alnus glutinosa L. Gaertn. J. Exp. Bot. 29: 935-951.Google Scholar
  28. Houba-Herin N., Pethe C., d'Alayer J. and Laloue M. 1999. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 17: 615-626.Google Scholar
  29. Jäger A.K., Stirk W.A. and van Staden J. 1997. Cytokinin oxidase activity in habituated and non-habituated soybean callus. Plant Growth Regul. 22: 203-206.Google Scholar
  30. Jones R.J., Schreiber B.M., Brenner M.L. and Foxon G. 1992. Cytokinin levels and oxidase activity during maize kernel development. In: Kamínek M., Zazímalová E. and Mok D.W.S. (eds), Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, The Netherlands, pp. 235-239.Google Scholar
  31. Jones R.J. and Schreiber B.M.N. 1997. Role and function of cytokinin oxidase in plants. Plant Growth Regul. 23: 123-134.Google Scholar
  32. Kamínek M. and Armstrong D.J. 1990. Genotypic variation in cytokinin oxidase from Phaseolus callus cultures. Plant Physiol. 93: 1530-1538.Google Scholar
  33. Kamínek M., Motyka V. and Vaníková R. 1997. Regulation of cytokinin content in plant cells. Physiol. Plant 101: 689-700.Google Scholar
  34. Kamínek M., Trčková M., Motyka V. and Gaudinová A. 1994. Role of cytokinins in control of wheat grain development and utilization of nutrients. Biol. Plant 36: 135.Google Scholar
  35. Kevers C., Motyka V., Kamínek M. and Gaspar T. 1997. Cytokinin content and its relation to cytokinin oxidase activity in normal and habituated sugar beet tissues. Arch. Physiol. Biochem. 105: 9-15.Google Scholar
  36. King R.A. and van Staden J. 1987. The metabolism of N6-isopentenyl 3H-adenine by isolated organs of Pisum sativum. Plant Physiol. 131: 181-189.Google Scholar
  37. Laloue M. and Fox J.E. 1985. Characterisation of an imine intermediate in the degradation of isopentenylated cytokinins by a cytokinin oxidase from wheat. In: Bopp M., Knopp B. and Rademacher W. (eds), Abstracts of the 12th International Conference on Plant Growth Substances., Heidelberg, Germany, p. 23.Google Scholar
  38. Laloue M. and Fox J.E. 1989. Cytokinin oxidase from wheat. Plant Physiol. 90: 899-906.Google Scholar
  39. Lee T.T., Starratt A.N. and Jevnikar J.J. 1982. Regulation of enzymatic oxidation of indole-3-acetic acid by phenols: structureactivity relationships. Phytochemistry 21: 517-521.Google Scholar
  40. Letham D.S. and Palni M.S. 1983. The biosynthesis and metabolism of cytokinins. Ann. Rev. Plant Physiol. 34: 163-197.Google Scholar
  41. Libreros-Minotta C.A. and Tipton P.A. 1995. A colorimetric assay for cytokinin oxidase. Anal. Biochem. 231: 339-341.Google Scholar
  42. McGaw B.A. and Horgan R. 1983. Cytokinin catabolism and cytokinin oxidase. Phytochemistry 22: 1103-1105.Google Scholar
  43. McGaw B.A. and Horgan R. 1983. Cytokinin oxidase from Zea mays kernels and Vinca rosea crown-gall tissue. Planta 159: 30-37.Google Scholar
  44. McGaw B.A., Horgan R. and Heald J.K. 1985. Cytokinin metabolism and the modulation of cytokinin activity in radish. Phytochemistry 24: 9-13.Google Scholar
  45. McGaw B.A., Horgan R., Heald J.K., Wullems G.J. and Schilperoort R.A. 1988. Mass-spectrometric quantitation of cytokinins in tobacco crown-gall tumours induced by mutated octopine Ti plasmids of Agrobacterium tumefaciens. Planta 176: 230-234.Google Scholar
  46. McIntire W.S. and Hartmann C. 1992. Copper-containing amine oxidases. In: Davidson V.L. (ed.), Principles and applications of quinoproteins. Marcel Dekker, New York, USA, pp. 97-171.Google Scholar
  47. Miernyk J.A. 1979. Abscisic acid inhibition of kinetin nucleotide formation in germinating lettuce seeds. Physiol. Plant 45: 63-66.Google Scholar
  48. Miernyk J.A. and Blaydes D.F. 1977. Short term metabolism of radioactive kinetin during lettuce seed germination. Physiol. Plant 39: 4-8.Google Scholar
  49. Morris R.O., Bilyeu K.D., Laskey J.G. and Cheikh N. 1999. Isolation of gene enconding a glycosylated cytokinin oxidase from maize. Biochem. Biophys. Res. Commun. 255: 328-333.Google Scholar
  50. Motyka V., Faiss M., Strnad M., Kamínek M. and Schmülling T. 1996. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol. 112: 1035-1043.Google Scholar
  51. Motyka V. and Kamínek M. 1992. Characterization of cytokinin oxidase from tobacco and poplar callus cultures. In: Kamínek M., Mok D.W.S. and Zažímalová E. (eds), Physiology and Biochemistry of Cytokinins in Plants. SPB Academic Publishing, The Hague, The Netherlands, pp. 33-39.Google Scholar
  52. Motyka V. and Kamínek M. 1994. Cytokinin oxidase from auxin and cytokinin dependent callus cultures of tobbaco (Nicotiana tabacum L. J. Plant Growth Regul. 13: 1-9.Google Scholar
  53. Pačes V., Werstiuk E. and Hall R.H. 1971. Conversion of N6-isopentenyladenosine to adenosine by enzyme activity in tobacco tissue. Plant Physiol. 48: 775-778.Google Scholar
  54. Palmer M.V., Letham D.S. and Gunning B.E.S. 1984. Cytokinin metabolism in nondivinding and auxin-induced divinding explants of Helianthus tuberosus L. tuber tissue. J. Plant Growth Regul. 2: 289-302.Google Scholar
  55. Palni L.M.S., Burch L. and Horgan R. 1988. The effect of auxin concentration on cytokinin stability and metabolism. Planta 174: 231-234.Google Scholar
  56. Parker C.W., Entsch B. and Letham D.S. 1986. Inhibitors of cytokinin metabolism. I. Inhibitors of two enzymes which metabolize cytokinins. Phytochemistry 25: 303-310.Google Scholar
  57. Parker C.W., Letham D.S., Gollnow B.I., Summons R.E., Duke C.C. and MacLeod J.K. 1978. Metabolism of zeatin by lupine seedlings. Planta 142: 239-251.Google Scholar
  58. Redig P., Motyka V., van Onckelen H.A. and Kamínek M. 1997. Regulation of cytokinin oxidase activity in tobacco callus expressing the T-DNA ipt gene. Physiol. Plant 99: 89-96.Google Scholar
  59. Shukla A. and Sawhney V.K. 1997. Cytokinin metabolism and cytokinin oxidase and adenine phosphoribosyltransferase activity in male sterile Brassica napus leaves. Phytochemistry 44: 377-381.Google Scholar
  60. Schreiber B.M.N., Roessler J.A. and Jones R.J. 1995. Polyclonal antibodies to maize seedling cytokinin oxidase. Plant Physiol. 108: 80.Google Scholar
  61. Singh S., Letham D.S., Jameson P.E., Zhang R., Parker C.W., Badenoch-Jones J. et al. 1988. Cytokinin biochemistry in relation to senescence. IV. Cytokinin metabolism in soybean explants. Plant Physiol. 88: 787-794.Google Scholar
  62. Singh S., Palni L.M.S. and Letham D.S. 1992. Cytokinins in relation to leaf senescence. V. Endogenous cytokinin level s and metabolism of zeatin riboside in leaf discs from green and senescent tobacco (Nicotiana rustica) leaves. J. Plant Physiol. 139: 279-283.Google Scholar
  63. Sondheimer E. and Tzou D. 1971. The metabolism of 8-14C-zeatin in bean axes. Plant Physiol. 47: 516-520.Google Scholar
  64. Summons R.E., Entsch B., Letham D.S., Gollnow B.I. and MacLeod J.K. 1980. Regulation of cell division in plants tissues. XXVIII. Metabolites of zeatin in sweet-corn kernels: purification and identification using high-performance liquid chromatography and chemical-ionization mass spectrometry. Planta 147: 422-434.Google Scholar
  65. Terrine C. and Laloue M. 1980. Kinetics of N6-isopentenyladenosine degradation in tobacco cells. Evidence of regulatory mechanism under the control of cytokinins. Plant Physiol. 65: 1090-1095.Google Scholar
  66. Thomas J.C. and Katterman F.R. 1986. Cytokinin activity induced by thidiazuron. Plant Physiol. 81: 681-683.Google Scholar
  67. Turner J.E., Mok M.C. and Mok D.W.S. 1985. Zeatin metabolism in fruits of Phaseolus: comparison between embryo, seedcoat, and pod tissues. Plant Physiol. 79: 321-322.Google Scholar
  68. van Kast C.A. and Laten H.M. 1987. Cytokinin utilisation by adenine requiring mutants of the yaest Saccharomyces cerevisiae. Plant Physiol. 83: 726-727.Google Scholar
  69. Veselý J., Havlíček L., Strnad M., Blow J.J., Donella-Deana A., Pinna L. et al. 1994. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 224: 771-786.Google Scholar
  70. Vaňková R. 1999. Cytokinin glycoconjugates-distribution, metabolism and function. In: Strnad M., Peč P. and Beck E. (eds), Advances in regulation of plant growth and development. Peres Publishers, Prague, Czech Republic, pp. 67-78.Google Scholar
  71. Wang J. and Letham D.S. 1995. Cytokinin oxidase-purification by affinity chromatography and activation by caffeic acid. Plant Sci. 112: 161-166.Google Scholar
  72. Whitty C.D. and Hall R.H. 1974. A cytokinin oxidase in Zea mays. Can. J. Biochem. 52: 781-799.Google Scholar
  73. Zhang R. and Letham D.S. 1990. Cytokinin translocation and metabolism in lupine species. III. Translocation of xylem cytokinin into the seed of lateral shoots of Lupinus angustifolius. Plant Sci. 70: 65-71.Google Scholar
  74. Zhang R., Letham D.S., Wong O.C., Nooden L.D. and Parker C.W. 1987. Cytokinin biochemistry in relation to leaf senescence. II. The metabolism of 6-benzylaminopurine in soybean leaves and the inhibition of its conjugation. Plant Physiol. 83: 334-340.Google Scholar
  75. Zhang R., Zhang X., Wang J., Letham D.S., McKinney S.A. and Higgins T.J.V. 1995. The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissues expressing an ipt gene. Planta 196: 84-94.Google Scholar
  76. Zhang X.D., Letham D.S., Zhang R. and Higgins T.J.V. 1995. Expressing of isopentenyl transferase gene is regulated by auxin in transgenic tobacco callus. Transgen. Res. 5: 57-65.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Galuszka
    • 1
  • I. Frébort
    • 1
  • M. Šebela
    • 1
  • P. Peč
    • 1
  1. 1.Department of Biochemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations