Advertisement

Plant Growth Regulation

, Volume 32, Issue 2–3, pp 369–380 | Cite as

Cytokinins and auxins in plant-pathogen interactions – An overview

  • P.E. Jameson
Article

Abstract

Alterations in plant development are frequently observed following pathogen infection. Infection by virus frequently results in stunting of growth, and the chlorosis and abscission of leaves; infection by fungi is often notable for green island formation and growth malformations; and infection by some bacteria results in the formation of galls. While the area of plant-pathogen interactions is currently receiving considerable attention and some plant-pathogen interactions are well characterised with both cytokinins and auxins being implicated (infection by Agrobacterium tumefaciens being the obvious example), there has been relatively little published in the recent literature pertaining to the involvement of cytokinins and auxins in viral, fungal and other forms of bacterial pathogenesis. This overview focuses on what is known concerning the strategies utilised by gall-forming bacteria, and fungal and viral phytopathogens to manipulate the endogenous cytokinin and/or auxin content of their host plant.

Auxins Cytokinins Fungi Gall-forming bacteria Phytopathogen Viruses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdala G., Milrad S., Vigliocco A., Lorenzo E., Pharis R. and Wanner G. 1999. Hyperauxinity in diseased leaves affected by Mal de Rio Cuarto Virus (MRCV). Biocell. 23:13-18.Google Scholar
  2. Akiyoshi D.E., Morris R.O., Hinz R., Mischke B.S., Kosuge T., Garfield D.J. et al. 1983. Cytokinin-auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80:407-411.Google Scholar
  3. Akiyoshi D.E., Regier D.A. and Gordon M.P. 1987. Cytokinin production by Agrobacterium and Pseudomonas spp. J. Bacteriol. 169:4242-4248.Google Scholar
  4. Alfono and Collmer 1996. Bacterial pathogens in plants: life up against the wall. The Plant Cell 8:1683-1698.Google Scholar
  5. Aloni R. 1987. Differentiation of vascular tissues. Annu. Rev. of Plant Physiol. 38:179-204.Google Scholar
  6. Angra R. and Mandahar C.L. 1991. Pathogenesis of barley leaves by Helminthosporium teres I; green island formation and the possible involvement of cytokinins. Mycopathol. 114:21-27.Google Scholar
  7. Badenoch-Jones J., Summon R.E., Djordjevic M.A., Shine J., Letham D.S. and Rolfe B.G. 1982. Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root hair curling and nodule initiation. Appl. Environ. Microbiol. 44:275-280.Google Scholar
  8. Beaty J.S., Powell G.K., Lica L., Regier D.A., MacDonald E.M.S., Hommes N.G. et al. 1986. Tzs, a nopaline Ti plasmid gene from Agrobacterium tumefaciens associated with trans-zeatin biosynthesis. Mol. Gen. Genet. 203:274-280.Google Scholar
  9. Bischoff M., Löw R., Grsic S., Rausch T., Hilgenberüg W. and Ludwig-Müller J. 1995. Infection with the obligate biotroph Plasmodiophora brassicae, the causal agent of the clubroot disease, does not affect expression of NIT1/2-related nitrilases in roots of Chinese cabbage. J. Plant Physiol. 147:341-345.Google Scholar
  10. Braun A.C. 1958. A physiological basis for the autonomous growth of the crown gall tumor call. Proc. Natl. Acad. Sci. USA 44:344-349.Google Scholar
  11. Butcher D.N., Sayadat E.-T. and Ingram D.S. 1974. The role of indole glucosinolates in the club root disease of the Cruciferae. Physiol. Plant Path. 4:127-140.Google Scholar
  12. Clark E., Vigodsky-Haas H. and Gafni Y. 1989. Characteristics in tissue culture of hyperplasias induced by Erwinia herbicola pathovar gypsophilae. Physiol. Mol. Plant Pathol. 35:383-390.Google Scholar
  13. Clark E., Manulis S., Ophir Y., Barash I. and Gafni Y. 1993. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Mol. Plant Path. 83:234-240.Google Scholar
  14. Clarke S.F. 1996. Physiologica between plant hormones and white clover mosaic virus infection of Phaseolus vulgaris L.. PhD Dissertation, University of Otago, Dunedin, New Zealand.Google Scholar
  15. Clarke S.F., Burritt D.J., Jameson P.E. and Guy P.L. 1998. Influence of plant hormones on virus replication and pathogenesis-related proteins in Phaseolus vulgaris L. infected with white clover mosaic potexvirus. Physiol. Mol. Plant Pathol. 53:195-207.Google Scholar
  16. Clarke S.F., Burritt D.J., Jameson P.E. and Guy P.L. 2000a. Influence of plant hormones on white clover mosaic potexvirus double stranded RNA. Plant Pathol. 49:428-434.Google Scholar
  17. Clarke S.F., Guy P.L., Jameson P.E., Schmierer D. and Burritt D.J. 2000b. Influence of white clover mosaic potexvirus on endogenous levels of jasmonic acid and related compounds in Phaseolus vulgaris L. seedlings. J. Plant Physiol. 154:433-437.Google Scholar
  18. Clarke S.F., McKenzie M.J., Burritt D.J., Guy P.L. and Jameson P.E. 1999. Influence of white clover mosaic potexvirus infection on the endogenous cytokinin content of bean. Plant Physiol. 120:547-552.Google Scholar
  19. Comai L. and Kosuge T. 1980. Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143:950-957.Google Scholar
  20. Comai L., Surico G. and Kosuge T. 1982. Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv. savastanoi. J. Gen. Microbiol. 128:2157-2163.Google Scholar
  21. Cooper S.J. and Ashby A.M. 1998. Comparison of cytokinin and cytokinin-O-glucoside cleaving b-glucosidase production in vitro by Venturia inaequalis and other phytopathogenic fungi with differing modes of nutrition in planta. Physiol. Mol. Plant Path. 53:61-72.Google Scholar
  22. Costacurta A. and Vanderleyden J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Micro. 21:1-18.Google Scholar
  23. Crespi M., Messens E., Caspian A.B., van Montagu M. and Desomer J. 1992. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 11:795-804.Google Scholar
  24. Crespi M., Vereecke D., Temmerman W., Van Montagu M. and Desomer J. 1994. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 176:2492-2501.Google Scholar
  25. Dekhuijzen H.M. 1976. Endogenous cytokinins in healthy and diseased plants. In: Heitefusz R. and Williams P.H. (eds), Encyclopedia of Plant Physiology (New Series)., pp. 526-559.Google Scholar
  26. Dekhuijzen H.M. and Overeem J.C. 1971. The role of cytokinins in clubroot formation. Physiol. Plant Path. 1:151-161.Google Scholar
  27. Dekhuijzen H.M. 1980. The occurrence of free and bound cytokinins in clubroots and Plasmodiophora brassicae infected turnip tissue cultures. Physiol. Plant 49:169-176.Google Scholar
  28. Dermatsia M., Ravnikar M. and Kovac M. 1995. Increased cytokinin-9-glucosylation in roots of susceptible Solanum tuberosum cultivar infected by potato virus YNTN. Mol. Plant-Microbe. Interact. 8:327-330.Google Scholar
  29. Eason J.R., Morris R.O. and Jameson P.E. 1996. The relationship between virulence and cytokinin production by Rhodococcus fascians (Tilford 1936) Goodfellow 1984. Plant Path. 45:323-331.Google Scholar
  30. Fraser R.S.S. and Whenham R.J. 1982. Plant growth regulators and virus infection: a critical review. Plant Growth Regul. 1:37-59.Google Scholar
  31. Freyermuth S.K., Long R.L.G., Mathur S., Holland M.A., Holtsford T.P., Stebbins N.E. et al. 1996. Microbial Growth on C1 Compounds. Kluwer Academic Publishers, Dordrecht, The Netherlands, 277-284.Google Scholar
  32. Greene E.M. 1980. Cytokinin production by micro-organisms. The Botanical Review 46:25-78.Google Scholar
  33. Holland M.A. 1997. Occam's razor applied to hormonology. Plant Physiol. 115:865-868.Google Scholar
  34. Houba-Hérin N., Pethe C., d'Alayer J. and Laloue M. 1999. Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J. 17:615-626.Google Scholar
  35. Hu F.-P., Fletcher M.J., Watson D.R.W., Clark R.G. and Young J.M. 1992. Identification of Rhodococcus fascians (Tilford 1936) Goodfellow 1984). J. Phytopathol. 136:37-45.Google Scholar
  36. Ingram D.S. and Tommerup I.C. 1972. The life history of Plasmodiophora brassicae Woron. Proc. Roy. Soc. London Ser. B 180:103-112.Google Scholar
  37. Jameson P.E., Zhang H. and Lewis D.H. 2000. Cytokinins: extraction, separation and analysis. In: Roberts J. and Tucker G. (eds), Methods in Molecular Biology: Plant Hormone Protocols., pp. 101-121.Google Scholar
  38. Kemp D.R. 1978. Indole-3-ylacetic acid metabolism of Corynebacterium fascians. In: Loutit M.W. and Miles J.A.R. (eds), Microbial Ecology. Springer-Verlag, Berlin, pp. 341-345.Google Scholar
  39. Kraigher H., Grayling A., Wang T.L. and Hanke D.E. 1991. Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochem. 30:2249-2254.Google Scholar
  40. Laby R.J. and Beer S.V. 1992. Hybridization and functional complementation of the hrp gene cluster from Erwinia amylovora strain Ea321 with DNA of other bacteria. Mol. Plant-Microbe. Interact. 5:412-419.Google Scholar
  41. Lawson E.N., Gantotti B.V. and Starr M.P. 1982. A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Cur. Microbiol. 7:327-332.Google Scholar
  42. Lewis D.H., Burge G.K., Schmierer D.M. and Jameson P.E. 1996. Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa) I. Changes during fruit development. Physiol. Plant 98:179-186.Google Scholar
  43. Lichter A., Barash I., Valinsky L. and Manulis S. 1995a. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv gypsophilae: characterization and role in gall formation. J. Bact. 177:4457-4465.Google Scholar
  44. Lichter A., Manulis S., Sagee O., Gafni Y., Gray J., Meilan R. et al. 1995b. Production of cytokinins by Erwinia herbicola pv gypsophilae and isolation of a locus conferring cytokinin biosynthesis. MPMI 8:114-121.Google Scholar
  45. Liu S.-T., Perry K.L., Schardl C.L. and Kado C.I. 1982. Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc. Natl. Acad. Sci. USA 79:2812-2816.Google Scholar
  46. Ludwig-Müller J., Bendel U., Thermann P., Ruppel M., Epstein E. and Hilgenberg W. 1993. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol. 125:763-769.Google Scholar
  47. Ludwig-Müller J., Epstein E. and Hilgenberg W. 1996. Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during infection with clubroot disease. Physiol. Plant 97:627-634.Google Scholar
  48. Ludwig-Müller J., Schubert B., Pieper K., Ihmig S. and Hilgenberg W. 1997. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochem. 44:407-414.Google Scholar
  49. MacDonald E.M.S., Powell G.K., Regier D.A., Glass N.L., Roberto F., Kosuge T. et al. 1986. Secretion of zeatin, ribosylzeatin, and ribosyl-19-methylzeatin by Pseudomonas savastanoi. Plant Physiol. 82:742-747.Google Scholar
  50. Manulis S., Valinsky L., Gafni Y. and Hershenhorn J. 1991. Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenicity on Gypsophila paniculata. Physiol. Mol. Plant Pathol. 39:161-171.Google Scholar
  51. Manulis S., Haviv-Chesner A., Brandl M.T., Lindow S.E. and Barash I. 1998a. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. MPMI 11:634-642.Google Scholar
  52. Manulis S., Kogan N., Valinsky L., Dror O. and Kleitman F. 1998b. Detection of Erwinia herbicola pv. gypsophilae in gypsophila plants by PCR. Eur. J. Plant Path. 104:85-91.Google Scholar
  53. Martin R.C., Mok M.C. and Mok D.W.S. 1999a. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol. 120:553-557.Google Scholar
  54. Martin R.C., Mok M.C. and Mok D.W.S. 1999b. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. 96:284-289.Google Scholar
  55. Miller C.O. 1967. Zeatin and zeatin riboside from a mycorrhizal fungus. Science 157:1055-1056.Google Scholar
  56. Morris R.O., Bilyeu K.D., Leskey J.G. and Cheikh N.N. 1999. Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem. and Biophys. Res. Comm. 255:328-333.Google Scholar
  57. Morris R.O., Blevins D.G., Dietrich J.T., Durley R.C., Gelvin S.B., Gray J. et al. 1993. Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust. J. Plant Physiol. 20:621-637.Google Scholar
  58. Morris R.O. 1995. Molecular aspects of hormone synthesis and action-genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies P.J. (ed.), Plant Hormones. Kluwer Academic Publishers, The Netherlands, pp. 318-339.Google Scholar
  59. Mothes K. and Engelbrecht L. 1961. Kinetin induced directed transport of substances in excised leaves in the dark. Phytochemistry 1:58-62.Google Scholar
  60. Müller P. and Hilgenberg W. 1986. Isomers of zeatin and zeatin riboside in clubroot tissue: evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol. Plant 66:245-250.Google Scholar
  61. Murai N., Skoog F., Doyle M.E. and Hanson R.S. 1980. Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Cornebacterium fascians. Proc. Nat. Acad. Sci. 77:619-623.Google Scholar
  62. Murphy A.M., Pryce-Jones E., Johnstone K. and Ashby A.M. 1997. Comparison of cytokinin production in vitro by Pyrenopeziza brassicae with other plant pathogens. Physiol. Mol. Plant Path. 50:53-65.Google Scholar
  63. Nester E.W. and Kosuge T. 1981. Plasmids specifying plant hyperplasias. Ann. Rev. Microbiol. 35:531-565.Google Scholar
  64. Nizan R., Barash I., Valinsky L., Lichter A. and Manulis S. 1997. The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. MPMI 10:677-682.Google Scholar
  65. Ng P.P., Cole A.L.J., Jameson P.E. and McWha J.A. 1982. Cytokinin production by ectomycorrhizal fungi. New Phytol. 91:57-62.Google Scholar
  66. Patten C.L. and Glick B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42:207-220.Google Scholar
  67. Pennazio S. and Roggero P. 1997. Endogenous changes in cytokinin activity in systemically virus-infected plants. Microbiol. 21:419-426.Google Scholar
  68. Powell G.K., Hommes N.G., Kuo J., Castle L.A. and Morris R.O. 1988. Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. Mol. Plant-Microbe. Interac. 1:235-242.Google Scholar
  69. Rausch T., Butcher D.N. and Hilgenberg W. 1981. Nitrilase activity in clubroot diseased plants. Physiol. Plant 52:467-470.Google Scholar
  70. Rausch T., Butcher D.N. and Hilgenberg W. 1983. Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiol. Plant 58:93-100.Google Scholar
  71. Regier D.A. and Morris R.O. 1982. Secretion of trans-zeatin by Agrobacterium tumefaciens: a function determined by the nopaline Ti plasmid. Biochem. Biophys. Res. Commun. 104: 1560-1566.Google Scholar
  72. Sano H. and Ohashi Y. 1995. Involvement of small GTP-binding proteins in defense signal-transduction of higher plants. Proc. Natl. Acad. Sci. USA 92:4138-4144.Google Scholar
  73. Sano H., Seo S., Koizumi N., Niki T., Iwamura H. and Ohashi Y. 1996. Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant Cell. Physiol. 37:762-769.Google Scholar
  74. Sano H., Seo S., Orudgev E., Youssefian S., Ishizuka K. and Ohashi Y. 1994. Expression of the gene for a small GTP-binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 91:10556-10560.Google Scholar
  75. Scott I.M. and Horgan R. 1984. Mass spectrometric quantification of cytokinin nucleotides and glycosides in tobacco crown gall tissue. Planta 161:345-354.Google Scholar
  76. Searle L.M., Chamberlain K., Rausch T. and Butcher D.N. 1982. The conversion of 3-indolylmethylglucosinolate to 3-indolylacetonitrile by myrosinase, and its relevance to the clubroot disease of the cruciferae. J. Exp. Bot. 33:935-942.Google Scholar
  77. Silverstone S.E., Gilchrist D.G., Bostock R.M. and Kosuge T. 1993. The 73-kb pIAA plasmid increases competitive fitness of Pseudomonas syringae subspecies savastanoi in oleander. Canadian J. Micro. 39:659-664.Google Scholar
  78. Stange R.R., Jeffares D., Young C., Scott D.B., Eason J.R. and Jameson P.E. 1996. PCR amplification of the fas-1 gene for the detection of virulent strains of Rhodococcus fascians. Plant Path. 45:407-417.Google Scholar
  79. Upadhaya N.M., Parker C.W., Letham D.S., Scott K.F. and Dart P.J. 1991. Evidence for cytokinin involvement in Rhizobium (IC3342)-induced leaf curl syndrome of pigeonpea (Cajanus cajan Millsp.). Plant Physiol. 94:1019-1025.Google Scholar
  80. van Staden J., Bayley A.D. and Macrae S. 1989. Cytokinins and mango flower malformation III. The metabolism of [3H] isopentenyladenine and [8 -14C] zeatin by Fusarium moniliforme. Physiol. Mol. Plant Path. 35:433-438.Google Scholar
  81. van Staden J. and Nicholson R.I.D. 1989. Cytokinins and mango flower formation II The cytokinin complement produced by Fusarium moniliforme and the ability of the fungus to incorporate [8 -14C] adenine into cytokinins. Physiol. Mol. Plant Path. 35:423-431.Google Scholar
  82. Zambryski P.C. 1992. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:465-490.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P.E. Jameson
    • 1
  1. 1.Institute of Molecular BioSciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations