Skip to main content
Log in

Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Considerable interest exists inthe potential role climate may play in human healthissues, especially regarding the effect of climatechange on vector-borne disease. The Aedesaegypti mosquito, the principal vector for dengue,considered the most important vector-borne viraldisease in the world, is particularly susceptible toclimate variability and climatic change. Here wepresent a modeling analysis focusing on global-scaleassociations between climate and the development,potential distribution, and population dynamics ofAe. aegypti. We evaluate the model by comparingand contrasting model data with observed mosquitodensities. There is good agreement between theobserved and modeled global distribution of themosquito; however, the model results suggest thepotential for increased latitudinal distributionsduring warmer months. Seasonal fluctuations inmosquito abundance also compare well to observed data. Discrepancies possibly reflect the relatively lowresolution of the climate data and model output andthe inability of the model to account for localmicroclimate effects, especially in coastal areas.Future modeling efforts will involve study ofinterannual variability in mosquito dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bar-Zeev, M.: 1957, ‘The Effect of Density on the Larvae of a Mosquito and its Influence on Fecundity’, Bull. Res. Counc. Israel 6B, 220–228, as cited in Focks et al. (1993a).

    Google Scholar 

  • Beier, J. C., Chadee, D. D., Charran, A., Comiskey, N. M., and Wesson, D. M.: 1995, ‘Country-Wide Prevalence of Ascogregarina culicis (Apicomplexa: Lecudinidae), A Protozoan Parasite of Aedes aegypti in Trinidad, West Indies’, J. Amer. Mosq. Control Assoc. 11, 419–423.

    Google Scholar 

  • Bliss, A. R., Jr. and Gill, J. M.: 1933, ‘The Effects of Freezing on the Larvae of Aedes aegypti’, Amer. J. Trop. Med. Hyg. 13, 583–588.

    Google Scholar 

  • Bouma, M. J. and van der Kaay, H. J.: 1994, ‘Epidemic Malaria in India and the El Niño Southern Oscillation’, Lancet 351, 1100.

    Google Scholar 

  • Bouma, M. J., Poveda, G., Rojas, W., Chavasse, D., Quiñones, M., Cox, J., and Patz, J.: 1997, ‘Predicting High-Risk Years for Malaria in Columbia Using Parameters of El Niño South Oscillation’, Trop. Med. Internat. Health 2, 1122–1127.

    Google Scholar 

  • Brown, W. H. and Rogers, E. P.: 1987, General, Organic, and Biochemistry (3rd edn.), Brooks/Cole Publishing Co., Monterey, p. 163.

    Google Scholar 

  • Chadee, D. D.: 1992, ‘Seasonal Incidence and Horizontal Distribution Patterns of Ovipositon by Aedes aegypti in an Urban Environment in Trinidad, West Indies’, J. Amer. Mosq. Control Assoc. 8, 281–284.

    Google Scholar 

  • Christophers, S. R.: 1960, Aedes aegypti (L.) The Yellow Fever Mosquito. Its Life History, Bionomics and Structure, University Press, Cambridge.

    Google Scholar 

  • Environmental News Network: 1998, ‘Global Warming May Harm Human Health’, [http://www.cnn.com/TECH/science/9811/16/climate.health.enn/], 16 November 1998.

  • Epstein, P. R.: 1994, November 13 (Letter to the Editor), New York Times, p. 101.

  • Focks, D. A. and Chadee, D. D.: 1997, ‘Pupal Survey: An Epidemiologically Significant Surveillance Method for Aedes aegypti: An Example Using Data from Trinidad’, Amer. J. Trop. Med. Hyg. 56, 159–167.

    Google Scholar 

  • Focks, D. A., Sackett, S. R., Bailey, D. L., and Dame, D. A.: 1981, ‘Observations on Container-Inhabiting Mosquitoes in New Orleans, Louisiana, with an Estimate of the Population Density of Aedes aegypti (L.)’, Amer. J. Trop. Med. Hyg. 30, 1329–1335.

    Google Scholar 

  • Focks, D. A., Haile, D. G., Daniels, E., and Mount, G. A.: 1993a, ‘Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Analysis of the Literature and Model Development’, J. Med. Entomol. 30, 1003–1017.

    Google Scholar 

  • Focks, D. A., Haile, D. G., Daniels, E., and Mount, G. A.: 1993b, ‘Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Simulation Results and Validation’, J. Med. Entomol. 30, 1018–1028.

    Google Scholar 

  • Gilpin, M. E. and McClelland, G. A. H.: 1979, ‘Systems Analysis of the Yellow Fever Mosquito Aedes aegypti’, Fortschr. Zool. 25, 355–388.

    Google Scholar 

  • Gubler, D. J.: 1998, ‘Resurgent Vector-Borne Diseases as a Global Health Problem’, Emerg. Infect. Dis. 4, 442–450.

    Google Scholar 

  • Gubler, D. J. and Clark, G. G.: 1995, ‘Dengue/Dengue Hemorrhagic Fever: The Emergence of a Global Health Problem’, Emerg. Infect. Dis. 1, 55–57.

    Google Scholar 

  • Hales, S., Weinstein, P., and Woodward, A.: 1996, ‘Dengue Fever Epidemics in the South Pacific: Driven by El Niño South Oscillation?’, Lancet 348, 1664–1665.

    Google Scholar 

  • Halstead, S. B. and Papaevangelou, G.: 1980, ‘Transmission of Dengue 1 and 2 Viruses in Greece in 1928’, Amer. J. Trop. Med. Hyg. 29, 635–637.

    Google Scholar 

  • Herrera-Basto, E., Prevots, D. R., Zarate, M. L., Silva, J. L., and Sepulveda-Amore, J.: 1992, ‘First Reported Outbreak of Classical Dengue Fever at 1700 Meters above Sea Level in Guerrero State, Mexico, June 1988’, Amer. J. Trop. Med. Hyg. 46, 649–635.

    Google Scholar 

  • Jackson, E. K.: 1995, ‘Climate Change and Global Infectious Disease Threats’, Med. J. Australia, 163, 570–574.

    Google Scholar 

  • Jetten, T. H. and Focks D. A.: 1997, ‘Potential Changes in the Distribution of Dengue Transmission under Climate Warming’, Amer. J. Trop. Med. Hyg. 57, 285–297.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: 1996, ‘The NCEP/NCAR 40-Year Reanalysis Project’, Bull. Amer. Meteorol. Soc. 77, 437–471.

    Google Scholar 

  • Leemans, R. and Cramer, W. P.: 1990, The HASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid, HASA WP-90-41, Int. Inst. for Appl. Syst. Anal., Laxenburg, Austria.

    Google Scholar 

  • Linacre, E. T.: 1986, ‘Estimating the Net-Radiation Flux’, Agric. Meteorol. 5, 49–63.

    Google Scholar 

  • Longstreth, J. and Wiseman, J.: 1989, ‘The Potential Impact of Climate Change on Patterns of Infectious Disease in the United States’, in Smith, J. B. and Tirpak, D. A. (eds.), The Potential Effects of Global Climate Change on the United States: Appendix G Health for the Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Maedonald, W. W.: 1956, ‘Aedes aegypti in Malaya. II. Larval and Adult Biology’, Ann. Trop. Med. Parasitol. 50, 399–414.

    Google Scholar 

  • Macfie, J. W. S.: 1920, ‘Heat and Stegomyia fasciata, Short Exposures to Raised Temperatures’, Ann. Trop. Med. Parasitol. 14, 73–82.

    Google Scholar 

  • Marquardt, D. W.: 1963, ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters’, J. Soc. Indust. Appl. Math. 11, 431–441.

    Google Scholar 

  • Martens, W. J. M.: 1995, Modelling the Effect of Global Warming on the Prevalence of Schistosomiasis, RIVM Report No. 461502010.

  • Martens, W. J. M., Jetten, T. H., and Focks, D. A.: 1997, ‘Sensitivity of Malaria, Schistosomiasis and Dengue to Global Warming’, Clim. Change 35, 145–156.

    Google Scholar 

  • Martens, W. J. M., Jetten, T. H., Rotmans, J., and Niessen, L. W.: 1995, ‘Climate Change and Vector-Borne Diseases’, Global Environ. Change 5, 195–209.

    Google Scholar 

  • Masterton, W. L. and Hurley, C. N.: 1989, Chemistry. Principles and Reactions, Saunders College Publishing, Toronto, pp. 217–218.

    Google Scholar 

  • McHugh, C. P. and Olson, J. K.: 1982, ‘The Effect of Temperature on the Development, Growth and Survival of Psorophora columbiae’, Mosq. News 42, 608–613.

    Google Scholar 

  • McMichael, A. J., Ando, M., Carcavallo, R., Epstein, P., Haines, A., Jendritzky, G., Kalkstein, L., Odongo, R., Patz, J., and Piver, W.: 1996a, ‘Human Population Growth’, in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, World Health Organization, Geneva.

    Google Scholar 

  • McMichael, A. J., Haines, A., Slooff, R., and Kovats, S. (eds.): 1996b, Climate Change and Human Health, World Health Organization, Geneva.

    Google Scholar 

  • Micks, D. W., and Moon, W. B.: 1980, ‘Aedes aegypti in a Texas Coastal County as an Index of Dengue Fever Receptivity and Control’, Amer. J. Trop. Med. Hyg. 29, 1382–1388.

    Google Scholar 

  • Monastersky, R.: 1996, ‘Health in the Hot Zone, How Would Global Warming Affect Humans?’, Sci. News 149, 218–219.

    Google Scholar 

  • Nayar, J. K. and Sauerman, D. M.: 1975, ‘The Effects of Nutrition on Survival and Fecundity in Florida Mosquitoes. Part 3. Utilization of Blood and Sugar for Fecundity’, J. Med. Entomol. 12, 220–225.

    Google Scholar 

  • Nicholls, N.: 1993, ‘El Niño-Southern Oscillation and Vector-Borne Disease’, Lancet 342, 1284–1285.

    Google Scholar 

  • PAHO: 1989, ‘Dengue in the Americas, 1980–1987’, Epidem. Bull. 10, 1–8.

    Google Scholar 

  • Patz, J. A., Epstein, P. R., Burke, T. A., and Balbus, J. M.: 1996, ‘Global Climate Change and Emerging Infectious Disease’, J. Amer. Med. Assoc. 275, 217–223.

    Google Scholar 

  • Patz, J. A., Martens, W. J. M., Focks, D. A., and Jetten, T. H.: 1998, ‘Dengue Fever Epidemic Potential as Projected by General Circulation Models of Global Climate Change’, Environ. Health Perspect. 106, 147–153.

    Google Scholar 

  • Pinheiro, F. P. and Chuit, R.: 1998, ‘Emergence of Dengue Hemorrhagic Fever in the Americas’, Infect. Med. 15, 244–251.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Model. 65, 51–70.

    Google Scholar 

  • Reeves, W. C., Hardy, J. L., Reisen, W. K., and Milby, M. M.: 1994, ‘Potential Effect of Global Warming on Mosquito-Borne Arboviruses’, J. Med. Entomol. 31, 323–332.

    Google Scholar 

  • Reiter, P.: 1998, ‘Global-Warming and Vector-Borne Disease in Temperate Regions and at High Altitude’, Lancet 351, 839–840.

    Google Scholar 

  • Rigau-Pérez, J. G., Clark, G. C., Gubler, D. J., Reiter, P., Sanders, E. J., and Vorndam, A. V.: 1998, ‘Dengue and Dengue Hemorrhagic Fever’, Lancet 352, 971–977.

    Google Scholar 

  • Rueda, L. M., Patel, K. J., Axtell, R. C., and Stinner, R. E.: 1990, ‘Temperature-Dependent Development and Survival Rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)’, J. Med. Entomol. 27, 892–898.

    Google Scholar 

  • Schoolfield, R. M., Sharpe, P. J. H., and Magnuson, C. E.: 1981, ‘Non-Linear Regression of Biological Temperature-Dependent Rate Models Based on Absolute Reaction-Rate Theory’, J. Theor. Biol. 88, 719–731.

    Google Scholar 

  • Sharpe, P. J. H. and DeMichele, D. W.: 1977, ‘Reaction Kinetics of Poikilotherm Development’, J. Theor. Biol. 64, 649–670.

    Google Scholar 

  • Shope, R.: 1991, ‘Global Climate Change and Infectious Diseases’, Environ. Health Perspect. 96, 171–174.

    Google Scholar 

  • Suarez, M. F. and Nelson, M. J.: 1981, ‘Registro de Altitud del Aedes aegypti en Colombia. [Records of the Altitude of Aedes aegypti in Colombia.]’, Biomedica 1, 225, as cited in McMichael et al. (1996b), p. 89.

    Google Scholar 

  • Tun-Lin, W., Kay, B. H., Barnes, A., and Forsyth, S.: 1996, ‘Critical Examination of Aedes aegypti Indices: Correlations with Abundance’. Amer. J. Trop. Med. Hyg. 54, 543–547.

    Google Scholar 

  • WHO: 1998, ‘Dengue in the WHO Western Pacific Region’, Weekly Epid. Rec. 73, 273–277.

    Google Scholar 

  • WHO: 1999, ‘Guidelines for the Treatment of Dengue Fever/Dengue Haemorrhagic Fever in Small Hospitals’, Regional Office S.E. Asia, New Delhi.

    Google Scholar 

  • Winch, P. J., Barrientos-Sanchez, G., Puigserver-Castro, E., Manzano-Cabrera, L., Lloyd, L. S., and Mendez-Galvan, J. F.: 1992, ‘Variation in Aedes aegypti Larval Indices over a One Year Period in a Neighborhood of Mérida, Yucatán, México’, J. Amer. Mosq. Control Assoc. 8, 193–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopp, M.J., Foley, J.A. Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti. Climatic Change 48, 441–463 (2001). https://doi.org/10.1023/A:1010717502442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010717502442

Keywords

Navigation