Advertisement

Climatic Change

, Volume 48, Issue 2–3, pp 441–463 | Cite as

Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti

  • Marianne J. Hopp
  • Jonathan A. Foley
Article

Abstract

Considerable interest exists inthe potential role climate may play in human healthissues, especially regarding the effect of climatechange on vector-borne disease. The Aedesaegypti mosquito, the principal vector for dengue,considered the most important vector-borne viraldisease in the world, is particularly susceptible toclimate variability and climatic change. Here wepresent a modeling analysis focusing on global-scaleassociations between climate and the development,potential distribution, and population dynamics ofAe. aegypti. We evaluate the model by comparingand contrasting model data with observed mosquitodensities. There is good agreement between theobserved and modeled global distribution of themosquito; however, the model results suggest thepotential for increased latitudinal distributionsduring warmer months. Seasonal fluctuations inmosquito abundance also compare well to observed data. Discrepancies possibly reflect the relatively lowresolution of the climate data and model output andthe inability of the model to account for localmicroclimate effects, especially in coastal areas.Future modeling efforts will involve study ofinterannual variability in mosquito dynamics.

Keywords

Climatic Change Potential Role Population Dynamic Model Data Model Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Zeev, M.: 1957, ‘The Effect of Density on the Larvae of a Mosquito and its Influence on Fecundity’, Bull. Res. Counc. Israel 6B, 220–228, as cited in Focks et al. (1993a).Google Scholar
  2. Beier, J. C., Chadee, D. D., Charran, A., Comiskey, N. M., and Wesson, D. M.: 1995, ‘Country-Wide Prevalence of Ascogregarina culicis (Apicomplexa: Lecudinidae), A Protozoan Parasite of Aedes aegypti in Trinidad, West Indies’, J. Amer. Mosq. Control Assoc. 11, 419–423.Google Scholar
  3. Bliss, A. R., Jr. and Gill, J. M.: 1933, ‘The Effects of Freezing on the Larvae of Aedes aegypti’, Amer. J. Trop. Med. Hyg. 13, 583–588.Google Scholar
  4. Bouma, M. J. and van der Kaay, H. J.: 1994, ‘Epidemic Malaria in India and the El Niño Southern Oscillation’, Lancet 351, 1100.Google Scholar
  5. Bouma, M. J., Poveda, G., Rojas, W., Chavasse, D., Quiñones, M., Cox, J., and Patz, J.: 1997, ‘Predicting High-Risk Years for Malaria in Columbia Using Parameters of El Niño South Oscillation’, Trop. Med. Internat. Health 2, 1122–1127.Google Scholar
  6. Brown, W. H. and Rogers, E. P.: 1987, General, Organic, and Biochemistry (3rd edn.), Brooks/Cole Publishing Co., Monterey, p. 163.Google Scholar
  7. Chadee, D. D.: 1992, ‘Seasonal Incidence and Horizontal Distribution Patterns of Ovipositon by Aedes aegypti in an Urban Environment in Trinidad, West Indies’, J. Amer. Mosq. Control Assoc. 8, 281–284.Google Scholar
  8. Christophers, S. R.: 1960, Aedes aegypti (L.) The Yellow Fever Mosquito. Its Life History, Bionomics and Structure, University Press, Cambridge.Google Scholar
  9. Environmental News Network: 1998, ‘Global Warming May Harm Human Health’, [http://www.cnn.com/TECH/science/9811/16/climate.health.enn/], 16 November 1998.Google Scholar
  10. Epstein, P. R.: 1994, November 13 (Letter to the Editor), New York Times, p. 101.Google Scholar
  11. Focks, D. A. and Chadee, D. D.: 1997, ‘Pupal Survey: An Epidemiologically Significant Surveillance Method for Aedes aegypti: An Example Using Data from Trinidad’, Amer. J. Trop. Med. Hyg. 56, 159–167.Google Scholar
  12. Focks, D. A., Sackett, S. R., Bailey, D. L., and Dame, D. A.: 1981, ‘Observations on Container-Inhabiting Mosquitoes in New Orleans, Louisiana, with an Estimate of the Population Density of Aedes aegypti (L.)’, Amer. J. Trop. Med. Hyg. 30, 1329–1335.Google Scholar
  13. Focks, D. A., Haile, D. G., Daniels, E., and Mount, G. A.: 1993a, ‘Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Analysis of the Literature and Model Development’, J. Med. Entomol. 30, 1003–1017.Google Scholar
  14. Focks, D. A., Haile, D. G., Daniels, E., and Mount, G. A.: 1993b, ‘Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Simulation Results and Validation’, J. Med. Entomol. 30, 1018–1028.Google Scholar
  15. Gilpin, M. E. and McClelland, G. A. H.: 1979, ‘Systems Analysis of the Yellow Fever Mosquito Aedes aegypti’, Fortschr. Zool. 25, 355–388.Google Scholar
  16. Gubler, D. J.: 1998, ‘Resurgent Vector-Borne Diseases as a Global Health Problem’, Emerg. Infect. Dis. 4, 442–450.Google Scholar
  17. Gubler, D. J. and Clark, G. G.: 1995, ‘Dengue/Dengue Hemorrhagic Fever: The Emergence of a Global Health Problem’, Emerg. Infect. Dis. 1, 55–57.Google Scholar
  18. Hales, S., Weinstein, P., and Woodward, A.: 1996, ‘Dengue Fever Epidemics in the South Pacific: Driven by El Niño South Oscillation?’, Lancet 348, 1664–1665.Google Scholar
  19. Halstead, S. B. and Papaevangelou, G.: 1980, ‘Transmission of Dengue 1 and 2 Viruses in Greece in 1928’, Amer. J. Trop. Med. Hyg. 29, 635–637.Google Scholar
  20. Herrera-Basto, E., Prevots, D. R., Zarate, M. L., Silva, J. L., and Sepulveda-Amore, J.: 1992, ‘First Reported Outbreak of Classical Dengue Fever at 1700 Meters above Sea Level in Guerrero State, Mexico, June 1988’, Amer. J. Trop. Med. Hyg. 46, 649–635.Google Scholar
  21. Jackson, E. K.: 1995, ‘Climate Change and Global Infectious Disease Threats’, Med. J. Australia, 163, 570–574.Google Scholar
  22. Jetten, T. H. and Focks D. A.: 1997, ‘Potential Changes in the Distribution of Dengue Transmission under Climate Warming’, Amer. J. Trop. Med. Hyg. 57, 285–297.Google Scholar
  23. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: 1996, ‘The NCEP/NCAR 40-Year Reanalysis Project’, Bull. Amer. Meteorol. Soc. 77, 437–471.Google Scholar
  24. Leemans, R. and Cramer, W. P.: 1990, The HASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid, HASA WP-90-41, Int. Inst. for Appl. Syst. Anal., Laxenburg, Austria.Google Scholar
  25. Linacre, E. T.: 1986, ‘Estimating the Net-Radiation Flux’, Agric. Meteorol. 5, 49–63.Google Scholar
  26. Longstreth, J. and Wiseman, J.: 1989, ‘The Potential Impact of Climate Change on Patterns of Infectious Disease in the United States’, in Smith, J. B. and Tirpak, D. A. (eds.), The Potential Effects of Global Climate Change on the United States: Appendix G Health for the Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  27. Maedonald, W. W.: 1956, ‘Aedes aegypti in Malaya. II. Larval and Adult Biology’, Ann. Trop. Med. Parasitol. 50, 399–414.Google Scholar
  28. Macfie, J. W. S.: 1920, ‘Heat and Stegomyia fasciata, Short Exposures to Raised Temperatures’, Ann. Trop. Med. Parasitol. 14, 73–82.Google Scholar
  29. Marquardt, D. W.: 1963, ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters’, J. Soc. Indust. Appl. Math. 11, 431–441.Google Scholar
  30. Martens, W. J. M.: 1995, Modelling the Effect of Global Warming on the Prevalence of Schistosomiasis, RIVM Report No. 461502010.Google Scholar
  31. Martens, W. J. M., Jetten, T. H., and Focks, D. A.: 1997, ‘Sensitivity of Malaria, Schistosomiasis and Dengue to Global Warming’, Clim. Change 35, 145–156.Google Scholar
  32. Martens, W. J. M., Jetten, T. H., Rotmans, J., and Niessen, L. W.: 1995, ‘Climate Change and Vector-Borne Diseases’, Global Environ. Change 5, 195–209.Google Scholar
  33. Masterton, W. L. and Hurley, C. N.: 1989, Chemistry. Principles and Reactions, Saunders College Publishing, Toronto, pp. 217–218.Google Scholar
  34. McHugh, C. P. and Olson, J. K.: 1982, ‘The Effect of Temperature on the Development, Growth and Survival of Psorophora columbiae’, Mosq. News 42, 608–613.Google Scholar
  35. McMichael, A. J., Ando, M., Carcavallo, R., Epstein, P., Haines, A., Jendritzky, G., Kalkstein, L., Odongo, R., Patz, J., and Piver, W.: 1996a, ‘Human Population Growth’, in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, World Health Organization, Geneva.Google Scholar
  36. McMichael, A. J., Haines, A., Slooff, R., and Kovats, S. (eds.): 1996b, Climate Change and Human Health, World Health Organization, Geneva.Google Scholar
  37. Micks, D. W., and Moon, W. B.: 1980, ‘Aedes aegypti in a Texas Coastal County as an Index of Dengue Fever Receptivity and Control’, Amer. J. Trop. Med. Hyg. 29, 1382–1388.Google Scholar
  38. Monastersky, R.: 1996, ‘Health in the Hot Zone, How Would Global Warming Affect Humans?’, Sci. News 149, 218–219.Google Scholar
  39. Nayar, J. K. and Sauerman, D. M.: 1975, ‘The Effects of Nutrition on Survival and Fecundity in Florida Mosquitoes. Part 3. Utilization of Blood and Sugar for Fecundity’, J. Med. Entomol. 12, 220–225.Google Scholar
  40. Nicholls, N.: 1993, ‘El Niño-Southern Oscillation and Vector-Borne Disease’, Lancet 342, 1284–1285.Google Scholar
  41. PAHO: 1989, ‘Dengue in the Americas, 1980–1987’, Epidem. Bull. 10, 1–8.Google Scholar
  42. Patz, J. A., Epstein, P. R., Burke, T. A., and Balbus, J. M.: 1996, ‘Global Climate Change and Emerging Infectious Disease’, J. Amer. Med. Assoc. 275, 217–223.Google Scholar
  43. Patz, J. A., Martens, W. J. M., Focks, D. A., and Jetten, T. H.: 1998, ‘Dengue Fever Epidemic Potential as Projected by General Circulation Models of Global Climate Change’, Environ. Health Perspect. 106, 147–153.Google Scholar
  44. Pinheiro, F. P. and Chuit, R.: 1998, ‘Emergence of Dengue Hemorrhagic Fever in the Americas’, Infect. Med. 15, 244–251.Google Scholar
  45. Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Model. 65, 51–70.Google Scholar
  46. Reeves, W. C., Hardy, J. L., Reisen, W. K., and Milby, M. M.: 1994, ‘Potential Effect of Global Warming on Mosquito-Borne Arboviruses’, J. Med. Entomol. 31, 323–332.Google Scholar
  47. Reiter, P.: 1998, ‘Global-Warming and Vector-Borne Disease in Temperate Regions and at High Altitude’, Lancet 351, 839–840.Google Scholar
  48. Rigau-Pérez, J. G., Clark, G. C., Gubler, D. J., Reiter, P., Sanders, E. J., and Vorndam, A. V.: 1998, ‘Dengue and Dengue Hemorrhagic Fever’, Lancet 352, 971–977.Google Scholar
  49. Rueda, L. M., Patel, K. J., Axtell, R. C., and Stinner, R. E.: 1990, ‘Temperature-Dependent Development and Survival Rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)’, J. Med. Entomol. 27, 892–898.Google Scholar
  50. Schoolfield, R. M., Sharpe, P. J. H., and Magnuson, C. E.: 1981, ‘Non-Linear Regression of Biological Temperature-Dependent Rate Models Based on Absolute Reaction-Rate Theory’, J. Theor. Biol. 88, 719–731.Google Scholar
  51. Sharpe, P. J. H. and DeMichele, D. W.: 1977, ‘Reaction Kinetics of Poikilotherm Development’, J. Theor. Biol. 64, 649–670.Google Scholar
  52. Shope, R.: 1991, ‘Global Climate Change and Infectious Diseases’, Environ. Health Perspect. 96, 171–174.Google Scholar
  53. Suarez, M. F. and Nelson, M. J.: 1981, ‘Registro de Altitud del Aedes aegypti en Colombia. [Records of the Altitude of Aedes aegypti in Colombia.]’, Biomedica 1, 225, as cited in McMichael et al. (1996b), p. 89.Google Scholar
  54. Tun-Lin, W., Kay, B. H., Barnes, A., and Forsyth, S.: 1996, ‘Critical Examination of Aedes aegypti Indices: Correlations with Abundance’. Amer. J. Trop. Med. Hyg. 54, 543–547.Google Scholar
  55. WHO: 1998, ‘Dengue in the WHO Western Pacific Region’, Weekly Epid. Rec. 73, 273–277.Google Scholar
  56. WHO: 1999, ‘Guidelines for the Treatment of Dengue Fever/Dengue Haemorrhagic Fever in Small Hospitals’, Regional Office S.E. Asia, New Delhi.Google Scholar
  57. Winch, P. J., Barrientos-Sanchez, G., Puigserver-Castro, E., Manzano-Cabrera, L., Lloyd, L. S., and Mendez-Galvan, J. F.: 1992, ‘Variation in Aedes aegypti Larval Indices over a One Year Period in a Neighborhood of Mérida, Yucatán, México’, J. Amer. Mosq. Control Assoc. 8, 193–195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Marianne J. Hopp
    • 1
  • Jonathan A. Foley
    • 2
  1. 1.International Research Institute for Climate Prediction (IRI)PalisadesUSA
  2. 2.Center for Sustainability and the Global Environment (SAGE), Institute for Environmental StudiesUniversity of WisconsinMadisonUSA

Personalised recommendations