Detection and quantification capabilities for 85Kr with the NIST low-level gas counting system: Impacts of instrumental and environmental backgrounds

  • L. A. Currie
  • G. A. Klouda
Article

Abstract

Among the most important, conservative geochemical tracers are the long-lived isotopes of krypton, 81Kr and 85Kr. Following a brief review of the metrology and applications of these radionuclides, we focus on the low-level measurement of the 10.8 year fission product 85Kr, in connection with its use for studying atmospheric transport and short term (decadal) atmosphere-ocean exchange and mixing. Special challenges for the study of 85Kr in the environment are: (1) reducing detection/quantification limits to mBq levels, to minimize the need for costly (large) atmospheric and marine samples, where current levels are ca. 1.4 Bq·m-3 (northern troposphere) and 0.08 mBq·kg-1 (surface ocean water); and (2) designing a protocol that accounts for the influence of both instrumental and environmental backgrounds and their variability. The capability of the NIST enhanced low-level gas counting system to meet these challenges was demonstrated theoretically and experimentally, showing that ambient 85Kr can be quantified in just 1.5 l air or 25 l seawater with 2000 min paired counting periods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Collon, T. A. Antaya, B. Davids, M. Fauerbach, R. Harkewicz, M. Hellstrom, W. Kutschera, D. J. Morrissey, R. C. Pardo, M. Paul, B. M. Sherrill, M. Steiner, Nucl. Instr. Meth., B123 (1997) 122.Google Scholar
  2. 2.
    H. Oeschger, The contribution of radioactive and chemical dating to understanding of the environmental system, Ch. 2 in: Nuclear and Chemical Dating Techniques: Interpreting the Environmental Record, L. A. Currie (Ed.), American Chemical Society Symp. Ser. No. 176, 1982, p. 5.Google Scholar
  3. 3.
    W. Weiss, A. Sittkus, H. Stockburger, H. Sartorius, K. O. Munnich, J. Geophys. Res., 88 [C13] (1983) 8574.Google Scholar
  4. 4.
    P. Collon, Development of cyclotron AMS for the detection of 81Kr and first application to groundwater dating, PhD Thesis, Univ. of Vienna, 1999.Google Scholar
  5. 5.
    I. Levin, V. Hesshaimer, J. Geophys. Res., 101[D11] (1996) 16745.Google Scholar
  6. 6.
    J. Sarmiento, A Chemical Strategy for the World Ocean Circulation Experiment (WOCE), §III.F. The use of 85Kr for investigation of ocean mixing and circulation, US Planning Report 10, College Station, TX, 1988. AddendumGoogle Scholar
  7. 7.
    C. Y. Chen, Y. M. Li, K. Bailey, T. P. O. Connor, L. Young, Z. T. Lu, Science, 286 (1999) 1139. N. Thonnard, M. G. Payne, D. Lu, Rev. Sci. Instrum., 65 (1992) No. 8, 2433.PubMedGoogle Scholar
  8. 8.
    K. F. Von Reden, A. P. Mcnichol, J. C. PEDEN, K. L. ELDER, A. R. GAGNON, R. S. SCHNEIDER, Nucl. Instr. Meth., B123 (1997) 438, and references therein.Google Scholar
  9. 9.
    International Atomic Energy Agency, Proc. Consultants Meeting on Isotopes of Noble Gases as Tracers in Environmental Studies, IAEA, Vienna, 1989.Google Scholar
  10. 10.
    L. WILHELMOVA, M. TOMASEK, K. STUKHEIL, Biol. Trace Elem. Res., 43 (1994) 725.Google Scholar
  11. 11.
    L. A. CURRIE, Anal. Chim. Acta, 391 (1999) 105.Google Scholar
  12. 12.
    L. A. CURRIE, Nucl. Instr. Meth., 100 (1972) 387.Google Scholar
  13. 13.
    E. CSONGOR, L. WILHELMOVA, Z DVORAK, P. POVINEC, M. Grgula, Appl. Radiation Isotopes, 39 (1988) 401.Google Scholar
  14. 14.
    L. A. Currie, E. M. Eijgenhuijsen, G. A. Klouda, Radiocarbon, 40 (1998) 113.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  • L. A. Currie
    • 1
  • G. A. Klouda
    • 1
  1. 1.NISTGaithersburgUSA

Personalised recommendations