Journal of Automated Reasoning

, Volume 27, Issue 2, pp 141–156 | Cite as

Distributivity in Łℵ0 and Other Sentential Logics

  • Kenneth Harris
  • Branden Fitelson

Abstract

Certain distributivity results for Łukasiewicz's infinite-valued logic Łℵ0 are proved axiomatically (for the first time) with the help of the automated reasoning program OTTER. In addition, non distributivity results are established for a wide variety of positive substructural logics by the use of logical matrices discovered with the automated model-finding programs MACE and MAGIC.

distributivity sentential logic Łukasiewicz detachment substructural 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A. and Belnap, N.: Entailment: The Logic of Relevance and Necessity, Princeton University Press, 1975.Google Scholar
  2. 2.
    Beavers, G.: Distribution in Łukasiewicz logics, Bull. Sect. Logic 21(4) (1992), 140-146.Google Scholar
  3. 3.
    Belnap, N.: Life in the undistributed middle, in P. Schroeder-Heister and K. Došen (eds.), Substructural Logics, Clarendon Press, 1993.Google Scholar
  4. 4.
    Brady, R.: Natural deduction systems for some quantified relevant logics, Logique et Analyse 27 (1984), 355-377.Google Scholar
  5. 5.
    Chang, C.: Proof of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 55-56.Google Scholar
  6. 6.
    Chang, C.: A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.Google Scholar
  7. 7.
    Cignoli, R. and Mundici, D.: An elementary proof of Chang's completeness theorem for the infinite-valued calculus of Łukasiewicz, Studia Logica 58(1) (1997), 79-97.Google Scholar
  8. 8.
    Davey, B. and Priestley, H.: Introduction to Lattices and Order, Cambrige University Press, 1990.Google Scholar
  9. 9.
    Dunn, J.: Relevance logic and entailment, in D. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, Vol. III., D. Reidel, 1986.Google Scholar
  10. 10.
    Kalman, J.: Condensed detachment as a rule of inference, Studia Logica 42 (1983), 443-451.Google Scholar
  11. 11.
    Kneale, W. and Kneale, M.: The Development of Logic, Clarendon Press, 1962.Google Scholar
  12. 12.
    Langford,C.: Analytical completeness of postulate sets, Proc. London Math. Soc. 25 (1926), 115-142.Google Scholar
  13. 13.
    Łukasiewicz, J.: Selected Works, North-Holland, 1970.Google Scholar
  14. 14.
    McCune, W.: Personal (email) communication, 2000.Google Scholar
  15. 15.
    McCune, W.: A Davis-Putnam program and its application to finite first-order model search: Quasigroup existence problems, Technical Report, Agronne National Laboratory, Argonne, IL, 1994.Google Scholar
  16. 16.
    McCune, W.: OTTER 3.0 reference manual and guide, ANL-94/6, Technical Report, Argonne National Laboratory, Argonne, IL, 1994.Google Scholar
  17. 17.
    Meredith, C.: The dependence of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1998), 54.Google Scholar
  18. 18.
    Ono, H. and Komori, Y.: Logics without the contraction rule, J. Symbolic Logic 50 (1990), 169-201.Google Scholar
  19. 19.
    Prior, A.: Formal Logic, 2nd edn, Clarendon Press, 1960.Google Scholar
  20. 20.
    Read, S.: Relevant Logic, Basil Blackwell, 1988.Google Scholar
  21. 21.
    Restall, G.: An Introduction to Substructural Logics, Routledge, 2000.Google Scholar
  22. 22.
    Rose, A.: Formalisation du calcul propositionnel implicatif à ℵ0 valeurs de Łukasiewicz, C.R. Acad. Sci. Paris 243 (1956), 1183-1185.Google Scholar
  23. 23.
    Rose, A. and Rosser, J.: Fragments of many-valued statement calculi, Trans. Amer. Math. Soc. 87 (1958), 1-53.Google Scholar
  24. 24.
    Scott, D.: Completeness and axiomatizability in many-valued logic, in Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., 1974.Google Scholar
  25. 25.
    Staney, J.: MAGIC, Matrix Generator for Implication Connectives: Release 2.1 notes and guide, TR-ARP-11-95, Technical Report, Automated Reasoning Project, Australian National University, 1995.Google Scholar
  26. 26.
    Urquhart, A.: Many-valued logic, in: D. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, Vol. III, D. Reidel, 1986.Google Scholar
  27. 27.
    Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: Case studies, J. Automated Reasoning 16(3) (1996), 223-239.Google Scholar
  28. 28.
    Wajsberg, M.: Logical Works, Polish Academy of Sciences, 1997.Google Scholar
  29. 29.
    Wos, L.: The resonance strategy, Comput. Math. Appl. 29(2) (1995), 133-178.Google Scholar
  30. 30.
    Wos, L.: The Automation of Reasoning: An Experimenter's Notebook with OTTER Tutorial, Academic Press, 1996.Google Scholar
  31. 31.
    Wos, L. and McCune, W.: The application of automated reasoning to proof translation and to finding proofs with specified properties: A case study in many-valued sentential calculus, Technical Report, Argonne National Laboratory, Argonne, IL, 1991.Google Scholar
  32. 32.
    Wos, L. and Pieper, G. W.: A Fascinating Country in the World of Computing: Your Guide to Automated Reasoning, World Scientific, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kenneth Harris
    • 1
  • Branden Fitelson
    • 1
  1. 1.Department of PhilosophyUniversity of Wisconsin–MadisonMadisonU.S.A

Personalised recommendations