Breast Cancer Research and Treatment

, Volume 65, Issue 3, pp 225–232 | Cite as

Genetic Alterations of the p14ARF-hdm2-p53 Regulatory Pathway in Breast Carcinoma

  • Gay Hui Ho
  • Jacqueline E. Calvano
  • Maria Bisogna
  • Ziad Abouezzi
  • Patrick I. Borgen
  • Carlos Cordón-Cardó
  • Kimberly J. Van Zee
Conference Report


TP53 is the most commonly mutated tumor suppressor gene in human cancers. The amplification and overexpression of HDM2 plays a role in tumorigenesis via inactivation of p53-dependent cell cycle arrest. p14ARF, an alternate transcript of the INK4A tumor suppressor locus, prevents hdm2-induced transcriptional silencing of p53 by binding hdm2. The role of this p14ARF-hdm2-p53 regulatory pathway in breast carcinoma is unknown. We hypothesized that p14ARF mutations and HDM2 gene amplification may be alternative mechanisms of p53 inactivation in breast cancer. Mutational analysis of TP53 (exons 5–9) and exon 1β of p14ARF was performed by PCR-SSCP and putative mutations were confirmed by sequencing. p14ARF mRNA expression was evaluated by RT-PCR and the presence of HDM2 gene amplification by differential PCR. Among the cell lines, 7/14 (50%) harbored TP53 mutations and 2/14 (14%) had a deletion of p14ARF exon 1β with no detectable p14ARF mRNA. None demonstrated HDM2 gene amplification. TP53 mutations were identified in 7/36 (19%) breast tumors and HDM2 amplification in 2/30 (7%) tumors. All the tumors contained an intact p14ARF exon 1β with corresponding expression of the mRNA. Alterations in the various components of this regulatory pathway were identified in nine (64%) cell lines and 25% of the 36 breast cancers with TP53 mutation being the predominant aberration. Although p14ARF mutations and HDM2 gene amplification appear to be uncommon events in breast carcinoma, deregulation of this pathway may occur via alternative mechanisms in breast carcinogenesis.

breast cancer cell cycle regulation HDM2 p14ARF TP53 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S: Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci USA 88: 10657-10661, 1991Google Scholar
  2. 2.
    Osborne RJ, Merlo GR, Mitsudomi T, Venesio T, Liscia DS, Cappa APM, Chiba I, Takahashi T, Nau NM, Callahan R, Minna JD: Mutations in the p53 gene in primary human breast cancers. Cancer Res 51: 6194-6198, 1991Google Scholar
  3. 3.
    Elledge RM, Fuqua SAW, Clark GM, Pujol P, Allred C, McGuire WL: Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat 26: 225-235, 1993Google Scholar
  4. 4.
    Bergh J, Norberg T, Sjögren S, Lindgren A, Holmberg L: Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1: 1029-1034, 1995Google Scholar
  5. 5.
    Kovach JS, Hartmann A, Blaszyk H, Cunningham J, Schaid D, Sommer SS: Mutation detected by highly sensitive methods indicates that p53 gene mutations in breast cancer can have important prognostic value. Proc Natl Acad Sci USA 93: 1093-1096, 1996Google Scholar
  6. 6.
    Cuny M, Kramar A, Courgal F, Johannsdottir V, Iacopetta B, Fontaine H, Grenier J, Culine S, Theillet C: Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res 60: 1077-1083, 2000Google Scholar
  7. 7.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 prote in and inhibits p53-mediated transactivation. Cell 69: 1237-1245, 1992Google Scholar
  8. 8.
    Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B.: Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362: 857-860, 1993Google Scholar
  9. 9.
    Levine AJ: The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. Virology 177: 419-426, 1990Google Scholar
  10. 10.
    Wu X, Bayle H, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126-1132, 1993Google Scholar
  11. 11.
    Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 387: 296-299, 1997Google Scholar
  12. 12.
    Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387: 299-303, 1997Google Scholar
  13. 13.
    Leach FS, Tokino P, Meltzer M, Burrell JD, Oliner S, Smith DE, Hill D, Sidransky KW, Kinzler K, Vogelstein B: p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53: 2231-2234, 1993Google Scholar
  14. 14.
    Fakharzadeh SS, Trusko SP, George DL: Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10: 1565-1569, 1991Google Scholar
  15. 15.
    Finlay C: The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol 13: 301-306, 1993Google Scholar
  16. 16.
    Courjal F, Rodriguez C, Louason G, Speiser P, Katsaros D, Tanner MM, Zeillinger R, Theillet C: DNA amplifications at 20q13 andMDM2 define distinct subsets of evolved breast and ovarian tumours. Br J Cancer 74: 1984-1989, 1996Google Scholar
  17. 17.
    McCann AH, Kirley A, Carney DN, Corbally N, Magee HM, Keating G, Dervan PA: Amplification of the MDM2 gene in human breast cancer and its association with MDM2 and p53 protein status. Br J Cancer 71: 981-985, 1995Google Scholar
  18. 18.
    Marchetti A, Buttita F, Girlando S, Dalla Palma P, Pellegrini S, Fina P, Doglioni C, Bevilacqua G, Barbareschi M: mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 175: 31-38, 1995Google Scholar
  19. 19.
    Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordón-Cardó C, DePinho RA: The INK4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713-723, 1998Google Scholar
  20. 20.
    Zhang Y, Xiong Y, Yarbrough WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725-734, 1998Google Scholar
  21. 21.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G: The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001-5014, 1998Google Scholar
  22. 22.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993-1000, 1995Google Scholar
  23. 23.
    Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D: A novel p16INK4A transcript. Cancer Res 55: 2995-2997, 1995Google Scholar
  24. 24.
    Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A: Complex structure and regulation of the P16 (MST1) locus. Cancer Res 55: 2988-2994, 1995Google Scholar
  25. 25.
    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ: Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649-659, 1997Google Scholar
  26. 26.
    Quelle DE, Cheng M, Ashmun RA, Sherr CJ: Cancerassociated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci USA 94: 669-673, 1997Google Scholar
  27. 27.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989Google Scholar
  28. 28.
    Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R: p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88: 5413-5417, 1991Google Scholar
  29. 29.
    Anelli A, Anelli TFM, Youngson B, Rosen PP, Borgen PI: Mutations in the p53 gene in male breast cancer. Cancer 75: 2233-2238, 1995Google Scholar
  30. 30.
    Frye RA, Benz CC, Liu E: Detection of amplified oncogenes by differential polymerase chain reaction. Oncogene 4: 1153-1157, 1989Google Scholar
  31. 31.
    Reid AH, Tsai MM, Venzon DJ, Wright CF, Lack EE, O'Leary TJ: MDM2 amplification, P53 mutation, and accumulation of the P53 gene product in malignant fibrous histiocytoma. Diagn Mol Pathol 5: 65-73, 1996Google Scholar
  32. 32.
    Seki A, Kodama J, Miyagi Y, Kamimura S, Yoshinouchi M, Kudo T: Amplification of the mdm-2 gene and p53 abnormalities in uterine sarcomas. Int J Cancer 73: 33-37, 1997Google Scholar
  33. 33.
    Raff T, van der Giet M, Endemann D, Wiederholt T, Paul M: Design and testing of beta-act in primers for RT-PCR that do not co-amplify processed pseudogenes. Biotechniques 23: 456-460, 1997Google Scholar
  34. 34.
    Done SJ, Arneson ACR, Özçelik H, Redston M, Andrulis IL: p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. Cancer Res 58: 785-789, 1998Google Scholar
  35. 35.
    Soussi T, de Fromentel CC, May P: Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5: 945-952, 1990Google Scholar
  36. 36.
    Carbone D, Chiba T, Mitsudomi T: Polymorphism at codon 213 within the p53 gene. Oncogene 6: 1691-1692, 1991Google Scholar
  37. 37.
    Momand J, Jung D, Wilczynski S, Niland J: The MDM2 gene amplification database. Nucleic Acids Res 26: 3453-3459, 1998Google Scholar
  38. 38.
    Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B: Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80-83, 1992Google Scholar
  39. 39.
    Sheikh MS, Shao Z-M, Hussain A, Fontana JA: The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Res 53: 3226-3228, 1993Google Scholar
  40. 40.
    Gazzeri S, Valle VD, Chaussade L, Brambilla C, Larsen CJ, Brambilla E: The human p19ARF prote in encoded by the b transcript of the p16 INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58: 3926-3931, 1998Google Scholar
  41. 41.
    Fitzgerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsal H, O'Neill E, Koh J, Finkelstein DM, Isselbacher KJ, Sober AJ, Haber DA: Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93: 8541-8545, 1996Google Scholar
  42. 42.
    Van Zee KJ, Calvano JE, Bisogna M, Borgen PI: INK4a exon 1bβ is wildtype in MCF-7. Proc AACR 39: 441, 1998Google Scholar
  43. 43.
    Della Valle V, Duro D, Bernard O, Larsen CJ: The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative b transcript of the p16INK4a/MTS1 gene. Oncogene 15: 2475-2481, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Gay Hui Ho
    • 1
    • 2
  • Jacqueline E. Calvano
    • 1
  • Maria Bisogna
    • 1
  • Ziad Abouezzi
    • 1
  • Patrick I. Borgen
    • 1
  • Carlos Cordón-Cardó
    • 3
  • Kimberly J. Van Zee
    • 1
  1. 1.The Breast Cancer Research Laboratory, Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Present address: Department of SurgerySingapore General HospitalSingapore
  3. 3.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations