Plant Molecular Biology

, Volume 46, Issue 2, pp 161–170

Characterization of an ATP-dependent type I DNA ligase from Arabidopsis thaliana

  • You-Qiang Wu
  • Barbara Hohn
  • Alicja Ziemienowicz


Here we report the purification and biochemical characterization of recombinant Arabidopsis thaliana DNA ligase I. We show that this ligase requires ATP as a source for adenylation. The calculated Km [ATP] for ligation is 3 μM. This enzyme is able to ligate nicks in oligo(dT)/poly(dA) and oligo(rA)/poly(dT) substrates, but not in oligo(dT)/poly(rA) substrates. Double-stranded DNAs with cohesive or blunt ends are also good substrates for the ligase. These biochemical features of the purified enzyme show the characteristics typical of a type I DNA ligase. Furthermore, this DNA ligase is able to perform the reverse reaction (relaxation of supercoiled DNA) in an AMP-dependent and PPi-stimulated manner.

Arabidopsis thaliana DNA ligase intein fusion ligation relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoufouchi, S., Prigent, C., Theze, N., Philippe, M. and Thiebauld, P. 1992. Expression of DNA ligase I and II during oogenesis and early development of Xenopus levis. Dev. Biol. 152: 199–202.Google Scholar
  2. Babiychuk, E., Fuangthong, M., Van Montagu, M., Inzé, D. and Kushnir, S. 1997. Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc. Natl. Acad. Sci. USA 94: 12722–12727.Google Scholar
  3. Barany, F. and Gelfand, D.H. 1991. Cloning, overexpression and nu-cleotide sequence of a thermostabile DNA ligase-encoding gene. Gene 109: 1–11.Google Scholar
  4. Barnes, D.E., Johnston, L.H., Kodama, K.-I., Tomkinson, A.E., Lasko, D.D. and Lindahl, T. 1990. Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87: 6679–6683.Google Scholar
  5. Cheng, C. and Shuman, S. 1997. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucl. Acids Res. 25: 1369–1374.Google Scholar
  6. Chong, S., Shao, Y., Paulus, H, Benner, J, Perler, F.B. and Xu, M.Q. 1996. Protein splicing involving the Saccharomyces cerevisiae VMA intein: the steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271: 22159–2268.Google Scholar
  7. Chong, S., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H. and Xu, M.Q. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192: 271–281.Google Scholar
  8. Ciarrocchi, G., Lestingi, M., Wright, G. and Montecucco, A. 1993. Bacteriophage T4 and human type I DNA ligases relax DNA under joining conditions. Nucl. Acids Res. 21: 5934–5939.Google Scholar
  9. Daniel, P.P., Bryant, J.A. and Barker, D.G. 1985. DNA ligase ac-tivity in pea seedlings (Pisum sativum L.): development of a sensitive assay system and partial characterisation of soluble and chromatin bound ligases. Biochem. Int. 11: 645–652.Google Scholar
  10. Doherty, A.J., Ashford, S.R., Subramanya, H.S. and Wigley, D.B. 1996. Bacteriophage T7 DNA ligase: overexpression, purifica-tion, crystallization, and characterization. J. Biol. Chem. 271: 11083–11089.Google Scholar
  11. Edler, R.H., Dell'Aquila, A., Mezzina, M., Sarasin, A. and Osborne, D.J. 1987. DNA ligase in repair and replication in the embryos of rye Secale cereale. Mutation Res. 181: 61–71.Google Scholar
  12. Engler M.J. and Richardson C.C. 1982. DNA ligases. In: P.D. Boyer (Ed.) The Enzymes, vol. XV, Academic Publishers, New York, pp. 3–29.Google Scholar
  13. Grawunder, U., Wilm, M., Wu, X., Kulesza, P Wilson, T.E., Mann, M. and Lieber, M.R. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388: 492–495.Google Scholar
  14. Grawunder, U., Zimmer, D., Kulesza, P. and Lieber, M.R. 1998. Re-quirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and double-strand break repair in vivo. J. Biol. Chem. 273: 24708–24714.Google Scholar
  15. Harvey, C.L., Gabriel, T.F., Wilt, E.M. and Richardson, C.C. 1971. Enzymatic breakage and joining of deoxyribonucleic acid: syn-thesis and properties of the deoxyribonucleic acid adenylate in the phage T4 ligase reaction. J. Biol. Chem. 246: 4523–4530.Google Scholar
  16. Howell, S.H. and Hecht, N.B. 1971. The appearance of polynu-cleotide ligase and DNA polymerase during the synchronous mitotic cycle in Lilium microspores. Biochim. Biophys. Acta 240: 343–352.Google Scholar
  17. Jenns, A.L. and Bryant, J.A. 1978. Correlation between deoxyri-bonuclease activity and DNA replication in the embryonic axes of germinating peas (Pisum sativum L.). Planta 138: 99–103.Google Scholar
  18. Kessler, B. 1971. Isolation, characterisation and distribution of a DNA ligase from higher plants. Biochim. Biophys. Acta 240: 496–505.Google Scholar
  19. Lehman, I.R. 1974. DNA ligase: structure, mechanism, and func-tion. Science 186: 790–797.Google Scholar
  20. Lindahl, T. and Barnes, D.E. 1992. Mammalian DNA ligases. Annu. Rev. Biochem. 61: 251–281.Google Scholar
  21. Modrich P., Lehman I.R. and Wang J.C. 1972. Enzymatic joining of polynucleotides: reversal of Escherichia coli deoxyribonucleic acid ligase reaction. J. Biol. Chem. 247: 6370–6372.Google Scholar
  22. Montecucco, A. and Ciarrocchi, G. 1988. AMP-dependent DNA relaxation catalyzed by DNA ligase occurs by a nick-closing mechanism. Nucl. Acids Res. 16: 7369–7381.170Google Scholar
  23. Nash, R. and Lindahl, T. 1996. DNA ligases. In: DNA Replica-tion in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 575–586.Google Scholar
  24. Prasad, R., Singhal, R.K., Srivastava, D.K., Molina, J.T., Tomkin-son, A.E. and Wilson, S.H. 1996. Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex. J. Biol. Chem. 271: 16000–16007.Google Scholar
  25. Prigent, C., Satoh, M.S., Daly, G., Barnes, D.E. and Lindahl, T. 1994. Aberrant DNA repair and DNA replication due to an in-herited enzymatic defect in human DNA ligase I. Mol. Cell. Biol. 14: 310–317.Google Scholar
  26. Sriskanda, V. and Shuman, S. 1998. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Nucl. Acids Res. 26: 4618–4625.Google Scholar
  27. Taylor, R.M., Hamer, M.J., Rosamond, J. and Bray, C.M. 1998. Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologue. Plant J. 14: 75–81.Google Scholar
  28. Teo, S.-H. and Jackson, S.P. 1997. Identification of Saccharomyces cerevisiae DNA ligase IV: involvment in double-strand break repair. EMBO J. 16: 4788–4795.Google Scholar
  29. Teraoka, H. and Tsukada, K. 1982. Eukaryotic DNA ligase. J. Biol. Chem. 257: 4758–4763.Google Scholar
  30. Teraoka, H. Minami, H., Iijima, S., Tsukada, K. Koiwai, O. and Date, T. 1993. Expression of active human DNA ligase I in Es-cherichia coli cells that harbor a full-length DNA ligase I cDNA construct. J. Biol. Chem. 268: 24156–24162.Google Scholar
  31. Tomkinson, A.E. and Levin, D.S. 1997. Mammalian DNA ligases. BioEssays 19: 893–901.Google Scholar
  32. Tomkinson, A.E., Lasko, D.D., Daly, G., and Lindahl, T. 1990. Mammalian DNA ligases: catalytic domain and size of DNA ligase I. J. Biol. Chem. 265: 12611–12617.Google Scholar
  33. Tomkinson, A.E., Roberts, E., Daly, G., Totty, N.F. and Lindahl, T. 1991. Three distinct DNA ligases in mammalian cells. J. Biol. Chem. 266: 21728–21735.Google Scholar
  34. Tomkinson, A.E., Chen, J., Besterman, J. and Husain, I. 1996. Cellular functions of mammalian DNA ligases. In: J.A. Nick-oloff and M.F. Hoekstra (Eds.) DNA Damage and Repair, Vol. 2: DNA Repair in Higher Eukaryotes. Humana Press, Totowa, NJ, pp. 181–198.Google Scholar
  35. Tsukada, K. and Nishi, A. 1971. Polynucleotide ligase from cultured plant cells. J. Biochem. 70: 541–542.Google Scholar
  36. Waga, S., Bauer, G. and Stillman, B. 1994. Reconstruction of com-plete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269: 10923–10934.Google Scholar
  37. Weiss, B., Thompson, A. and Richardson, C.C. 1968. Enzymatic breakage and joining of deoxyribonucleic acid: Properties of the enzyme-adenylate intermediate in the polynucleotide ligase reaction. J. Biol. Chem. 243: 4556–4563.Google Scholar
  38. Wilson, T.E., Grawunder, U. and Lieber, M.R. 1997. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388: 495–498.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • You-Qiang Wu
    • 1
  • Barbara Hohn
    • 1
  • Alicja Ziemienowicz
    • 2
  1. 1.Friedrich Miescher-InstituteBaselSwitzerland
  2. 2.Plant Protection and Biotechnology Laboratory, Dept. of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland

Personalised recommendations