Annals of Global Analysis and Geometry

, Volume 20, Issue 1, pp 77–101

Weierstrass Representation of Some Simply-Periodic Minimal Surfaces

  • Martin Traizet


We prove a desingularization result for minimal surfaces inEuclidean space using Weierstrass representation. We solve the periodproblem using the implicit function theorem at a degenerate point.

minimal surface period problem Weierstrass representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banica, C. and Stanasila, O.: Algebraic Methods in the Global Theory of Complex Spaces, Wiley, New York, 1976.Google Scholar
  2. 2.
    Fay, J. D.: Theta Functions on Riemann Surfaces, Lecture Notes in Math. 352, Springer-Verlag, New York, 1973.Google Scholar
  3. 3.
    Forster, O.: Lectures on Riemann Surfaces, Springer-Verlag, New York, 1981.Google Scholar
  4. 4.
    Grauert, H.: Ein Theorem der analytischen Garbentheorie, Publ. I.H.E.S. 5 (1960), 233-292.Google Scholar
  5. 5.
    Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, Wiley Interscience, New York, 1978.Google Scholar
  6. 6.
    Hartshorne, R.: Algebraic Geometry, Springer, New York, 1977.Google Scholar
  7. 7.
    Hormander, L.: An Introduction to Complex Analysis in Several Variables, D. Van Nostrand, New York, 1966Google Scholar
  8. 8.
    Imayoshi, Y. and Taniguchi, M.: An Introduction to Teichmuller Spaces, Springer, New York, 1992.Google Scholar
  9. 9.
    Kapouleas, N.: Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. 131 (1990), 239-330.Google Scholar
  10. 10.
    Meeks, W. H., Perez, J. and Ros, A.: Uniqueness of the Riemann minimal example, Invent. Math. 133(1) (1998), 107-132.Google Scholar
  11. 11.
    Meeks, W. H. and Rosenberg, H.: The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), 538-578.Google Scholar
  12. 12.
    Traizet, M.: Construction de surfaces minimales en recollant des surfaces de Scherk, Ann. Inst. Fourier 46 (1996), 1385-1442.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Traizet
    • 1
  1. 1.Département de MathématiquesUniversité de ToursToursFrance

Personalised recommendations