Annals of Global Analysis and Geometry

, Volume 20, Issue 1, pp 77–101

Weierstrass Representation of Some Simply-Periodic Minimal Surfaces

  • Martin Traizet
Article
  • 52 Downloads

Abstract

We prove a desingularization result for minimal surfaces inEuclidean space using Weierstrass representation. We solve the periodproblem using the implicit function theorem at a degenerate point.

minimal surface period problem Weierstrass representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banica, C. and Stanasila, O.: Algebraic Methods in the Global Theory of Complex Spaces, Wiley, New York, 1976.Google Scholar
  2. 2.
    Fay, J. D.: Theta Functions on Riemann Surfaces, Lecture Notes in Math. 352, Springer-Verlag, New York, 1973.Google Scholar
  3. 3.
    Forster, O.: Lectures on Riemann Surfaces, Springer-Verlag, New York, 1981.Google Scholar
  4. 4.
    Grauert, H.: Ein Theorem der analytischen Garbentheorie, Publ. I.H.E.S. 5 (1960), 233-292.Google Scholar
  5. 5.
    Griffiths, P. and Harris, J.: Principles of Algebraic Geometry, Wiley Interscience, New York, 1978.Google Scholar
  6. 6.
    Hartshorne, R.: Algebraic Geometry, Springer, New York, 1977.Google Scholar
  7. 7.
    Hormander, L.: An Introduction to Complex Analysis in Several Variables, D. Van Nostrand, New York, 1966Google Scholar
  8. 8.
    Imayoshi, Y. and Taniguchi, M.: An Introduction to Teichmuller Spaces, Springer, New York, 1992.Google Scholar
  9. 9.
    Kapouleas, N.: Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. 131 (1990), 239-330.Google Scholar
  10. 10.
    Meeks, W. H., Perez, J. and Ros, A.: Uniqueness of the Riemann minimal example, Invent. Math. 133(1) (1998), 107-132.Google Scholar
  11. 11.
    Meeks, W. H. and Rosenberg, H.: The geometry of periodic minimal surfaces, Comment. Math. Helv. 68 (1993), 538-578.Google Scholar
  12. 12.
    Traizet, M.: Construction de surfaces minimales en recollant des surfaces de Scherk, Ann. Inst. Fourier 46 (1996), 1385-1442.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Martin Traizet
    • 1
  1. 1.Département de MathématiquesUniversité de ToursToursFrance

Personalised recommendations