Acta Mathematica Hungarica

, Volume 91, Issue 1–2, pp 27–52

Lagrange Interpolation at Laguerre Zeros in Some Weighted Uniform Spaces

  • G. Mastroianni
  • D. Occorsio
Article

Abstract

We introduce an interpolatory process essentially based on the Laguerre zeros and we prove that it is an optimal process in some weighted uniform spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695-708.Google Scholar
  2. [2]
    P. Erdős and P. Turán, On interpolation III. Interpolatory theory of polynomials, Annals of Mathematics, 41 (1940), 510-553.Google Scholar
  3. [3]
    V. M. Fedorov, Constructive characteristics of functions satisfying a Lipschitz condition on the semiaxis, Vestnik Mosk. Univ., Matematika, 38 (1983), 64-69.Google Scholar
  4. [4]
    G. Freud, Lagrange-féle interpolációs eljárások konvergenciája végtelen intervallumon, Mat. Lapok, 18 (1967), 289-292.Google Scholar
  5. [5]
    G. Freud, A certain class of orthogonal polynomials (Russian), Mat. Zametki, 9 (1971), 511-520.Google Scholar
  6. [6]
    G. Freud, On two polynomial inequalities. II, Acta Math. Acad. Sci. Hungar., 23 (1972), 137-145.Google Scholar
  7. [7]
    I. Joó, On some problems of M. Horváth, Annales Univ. Sci. Budapest., Sect. Math., 31 (1988), 243-260.Google Scholar
  8. [8]
    I. Joó and N. X. Ky, Answer to a problem of Paul Turán, Annales Univ. Sci. Budapest., Sect. Math., 31 (1988).Google Scholar
  9. [9]
    O. Kis, Lagrange interpolation with nodes at the roots of Sonin-Markov polynomials (in Russian), Acta Math. Acad. Sci. Hungar., 23 (1972), 389-417.Google Scholar
  10. [10]
    A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials and Nevai's conjecture for Freud weights, Constr. Approx., 8 (1992), 463-535.Google Scholar
  11. [11]
    D. S. Lubinsky, An extension of the Erdős-Turán inequality for the sum of successive fundamental polynomials, Annals of Numerical Maths., 2 (1995), 305-309.Google Scholar
  12. [12]
    G. Mastroianni, Uniform convergence of derivatives of Lagrange interpolation, J. Comp. and Appl. Math., 43 (1992), 1-15.Google Scholar
  13. [13]
    G. Mastroianni and P. Nevai, Mean convergence of derivatives of Lagrange interpolation, J. Comput. Appl. Math., 34 (1991), 385-396.Google Scholar
  14. [14]
    H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with Laguerre weights, in: Approx. Theory IV, Academic Press (1983).Google Scholar
  15. [15]
    P. Nevai, Orthogonal Polynomials, Memoirs of the American Mathematical Society, 213 American Mathematical Society (Providence, RI, 1979).Google Scholar
  16. [16]
    P. Nevai, A Laguerre-polinomok gyökein alapuló Lagrange-féle interpolációról, Mat. Lapok, 22 (1971), 149-164.Google Scholar
  17. [17]
    E. L. Poiani, Mean Cesaro summability of Laguerre and Hermite series, Trans. AMS, 173 (1972), 1-31.Google Scholar
  18. [18]
    P. O. Runck and P. Vértesi, Some good point systems for derivatives of Lagrange interpolatory operators, Acta Math. Hungar., 56 (1990), 337-342.Google Scholar
  19. [19]
    J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line, J. of Inequal. & Appl., 1 (1997), 99-123.Google Scholar
  20. [20]
    J. Szabados, On the convergence of the derivatives of projection operators, Analysis, 7 (1987), 349-357.Google Scholar
  21. [21]
    G. Szegö, Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, Vol. 23 (Providence, RI, 1975).Google Scholar
  22. [22]
    P. Vértesi (oral communication).Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  • G. Mastroianni
    • 1
  • D. Occorsio
    • 1
  1. 1.DIPARTIMENTO DI MATEMATICAUNIVERSITÀ DELLA BASILICATAPOTENZAITALY

Personalised recommendations