Acta Applicandae Mathematica

, Volume 67, Issue 1, pp 91–115 | Cite as

Maps Interchanging f-Structures and their Harmonicity

  • K. L. Duggal
  • S. Ianus
  • A. M. Pastore


We study some remarkable classes of metric f-structures on differentiable manifolds (namely, almost Hermitian, almost contact, almost S-structures and K-structures). We state and prove the necessary condition(s) for the existence of maps commuting such structures. The paper contains several new results, of geometric significance, on CR-integrable manifolds and the harmonicity of such maps.

f-structures harmonic maps CR-manifolds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V. I.: Contact geometry: The geometrical method of Gibbs's thermodynamics, In: Proc. Gibbs Symposium, Yale Univ., 1989, pp. 163-179.Google Scholar
  2. 2.
    Barrows, M. and Romero, A.: Indefinite Kähler manifolds, Math. Ann. 261 (1982), 55-62.Google Scholar
  3. 3.
    Bejan, C. L. and Benyounes, M.: Harmonic maps between almost hyperbolic Hermitian manifolds, Bull. Inst. Politechnic Iasi 43(42)(3-4) (1979), 15-20.Google Scholar
  4. 4.
    Bejan, C. L., Benyounes, M. and Loubeau, E.: Quasi-harmonicity for semi-Riemannian manifolds, Bull. Inst. Politechnic Iasi, 44(43)(3-4) (2000).Google Scholar
  5. 5.
    Blair, D. E.: Geometry of manifolds with structural group U (n) x O (s), J. Differential Geom. 4 (1970), 155-167.Google Scholar
  6. 6.
    Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Springer-Verlag, Berlin, 1976.Google Scholar
  7. 7.
    Blair, D. E., Ludden, G. D. and Yano, K.: Induced structures on submanifolds, Kodai Math. Sem. Rep. 22(2) (1970), 188-198.Google Scholar
  8. 8.
    Blair, D. E., Ludden, G. D. and Yano, K.: Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.Google Scholar
  9. 9.
    Burstall, F. E., Lemaire, J. H. and Rawnsley, J. H.: Harmonic maps bibliography, masfeb/harmonic.htmlGoogle Scholar
  10. 10.
    Duggal, K. L.: Spacetime manifolds and contact structures, Internat. J. Math. Math. Sci. 13 (1990), 545-554.Google Scholar
  11. 11.
    Duggal, K. L.: Some applications of globally framed structures to relativity, Ann. Mat. Pure App. 4 (1988), 545-554.Google Scholar
  12. 12.
    Duggal, K. L.: Lorentzian geometry of globally framed manifolds, Acta Appl. Math. 19 (1990), 131-148.Google Scholar
  13. 13.
    Duggal, K. L. and Sharma, R.: Lorentzian framed structures in general relativity, Gen. Relativity Gravitation 18 (1986), 71-77.Google Scholar
  14. 14.
    Duggal, K. L., Ianus, S. and Pastore, A. M.: Harmonic maps on f-manifolds with semi-Riemmanian metrics, In: D. Andrica and P. Enghis (eds), Proc. 23rd Conf. on Geometry and Topology, Cluj-Napoca, 1994, pp. 47-55.Google Scholar
  15. 15.
    Eells, J. and Lemaire, L.: Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.Google Scholar
  16. 16.
    Eells, J. and Sampson, J. H.: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.Google Scholar
  17. 17.
    Erdem, S.: On almost(Para) contact (Hyperbolic) metric manifolds and harmonicity of (ϕ, ϕ'')-holomorphic maps between them, Preprint.Google Scholar
  18. 18.
    Fuglede, B.: Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fennicae Math. 21 (1996), 31-50.Google Scholar
  19. 19.
    Gherghe, C.: Pluriharmonicity on trans-Sasaki manifolds, Preprint.Google Scholar
  20. 20.
    Gherghe, C., Ianus, S. and Pastore, A. M.: Harmonic maps and morphisms on almost metric contact manifolds, Preprint, 1999.Google Scholar
  21. 21.
    Goldberg, S. and Yano, K.: Globally framed f-manifolds, Illinois J. Math. 15 (1971), 456-474.Google Scholar
  22. 22.
    Gudmundsson, S.: The bibliography of harmonic morphisms, matematiklu/personal/sigma/harmonic/bibliography.htmlGoogle Scholar
  23. 23.
    Gudmundsson, S. and Wood, J. C.: Harmonic morphism between almost Hermitian manifolds, Boll. U.M.I. (7) 11B(2) (1997), 185-197.Google Scholar
  24. 24.
    Ianus, S. and Pastore, A. M.: On harmonic mappings of metric f-manifolds, Tensor (NS) 54 (1993), 203-206.Google Scholar
  25. 25.
    Ianus, S. and Pastore, A. M.: Harmonic maps on contact metric manifolds, Ann. Math. Univ. Blaise Pascal 2 (1995), 43-53.Google Scholar
  26. 26.
    Ianus, S. and Pastore, A. M.: Harmonic maps on Sasakian and cosymplectic manifolds, Proc. 24th NCGT, Timisoara, 1996, pp. 139-155.Google Scholar
  27. 27.
    Ianus, S. and Pastore, A. M.: Some foliations defined by f-structures with parallelizable kernel (53), Dipartimento di Matematica, Bari, 1996.Google Scholar
  28. 28.
    Ianus, S. and Pastore, A. M.: Harmonic maps and f-structures with parallelizable kernel, In: J. Szenthe (ed.), New Developments in Differential Geometry, Kluwer Acad. Publ., Dordrecht, 1998, pp. 143-154.Google Scholar
  29. 29.
    Ianus, S. and Pastore, A. M.: Harmonic maps and morphisms on metric f-manifolds with parallelizable kernel, In: C. K. Anand, P. Baird, E. Loubeau and J. C. Wood (eds), Harmonic Morphisms, Harmonic Maps and Related Topics, Brest, Pitman Res. Notes in Math. Ser., Longman, London, 1999, pp. 67-73.Google Scholar
  30. 30.
    Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tô hoku Math. J. 24 (1972), 93-103.Google Scholar
  31. 31.
    Loubeau, E.: Hermitian harmonic maps, Beiträge Algebra Geom. 40 (1999), 1-14.Google Scholar
  32. 32.
    Milmann, R. S.: f-structures with parallelizable kernel on manifolds, J. Differential Geom. 9 (1974), 531-535.Google Scholar
  33. 33.
    Olszak, Z.: On contact metric manifolds, Tô hoku Math. J. 31 (1979), 247-253.Google Scholar
  34. 34.
    Oubina, A.: New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193.Google Scholar
  35. 35.
    Rawnsley, J.: f-structures, f-twistor spaces and harmonic maps, In: Lecture Notes in Math. 1164, Springer-Verlag, Berlin, 1984, pp. 85-159.Google Scholar
  36. 36.
    Tanno, S.: Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379.Google Scholar
  37. 37.
    Urakawa, H.: Calculus of Variation and Harmonic Maps, Transl. Math. Monogr. 132, Amer. Math. Soc., Providence, 1993.Google Scholar
  38. 38.
    Urakawa, H.: Variational problems over strongly pseudo convex CR manifolds, In: Differential Geometry, Proc. sympos. honor of Prof. Su Buchin's, 90th birthday, World Scientific, Singapore, 1993, pp. 233-242.Google Scholar
  39. 39.
    Yano, K.: On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0, Tensor (NS) 14 (1963), 99-109.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • K. L. Duggal
    • 1
  • S. Ianus
    • 2
  • A. M. Pastore
    • 3
  1. 1.Department of MathematicsUniversity of WindsorWindsorCanada
  2. 2.Department of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Department of MathematicsUniversity of BariBariItaly

Personalised recommendations