Advertisement

Total versus effective total efficiency in the computation of coincidence summing corrections in gamma-ray spectrometry of volume sources

  • D. Arnold
  • O. Sima
Article

Abstract

For the evaluation of coincidence summing effects for volume sources an effective total efficiency (ETE) is used instead of the common total efficiency (TE). In this paper ETE is computed by the Monte Carlo method. The differences between ETE and TE are analyzed and their origin is discussed. Measured values for the coincidence summing correction factors for a standard solution containing 152Eu in a one liter Marinelli beaker are compared with computed values obtained from appropriate values of ETE. It is shown that the procedure for the evaluation of the coincidence effects is reliable. As a consequence it can be concluded that 152Eu volume sources can be successfully used for efficiency calibration even in the case of high-efficiency detectors and close source-to-detector distances.

Keywords

Physical Chemistry Inorganic Chemistry Monte Carlo Method Correction Factor Summing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Debertin, R. Helmer, Gamma-and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, 1988.Google Scholar
  2. 2.
    O. Sima, D. Arnold, C. Dovlete, J. Radioanal. Nucl. Chem., 248 (2001) 359.Google Scholar
  3. 3.
    K. Debertin, U. SchÖtzig, Nucl. Instr. Meth., 158 (1979) 471.Google Scholar
  4. 4.
    O. Sima, D. Arnold, Appl. Radiation Isotopes, 53 (2000) 51.Google Scholar
  5. 5.
    T. M. Semkow, G. Mehmood, P. P. Parekh, M. Virgil, Nucl. Instr. Meth., A290 (1990) 437.Google Scholar
  6. 6.
    M. Korun, R. Martinèiè, Nucl. Instr. Meth., A385 (1997) 511.Google Scholar
  7. 7.
    M. Blaauw, Nucl. Instr. Meth., A419 (1998) 146.Google Scholar
  8. 8.
    P. De Felice, P. Angelini, A. Fazio, R. Biagini, Appl. Radiation Isotopes, 52 (2000) 745.Google Scholar
  9. 9.
    K. Debertin, J. Ren, Nucl. Instr. Meth., A278 (1989) 541.Google Scholar
  10. 10.
    V. P. Kolotov, M. J. Koskelo, J. Radioanal. Nucl. Chem., 233 (1998) 95.Google Scholar
  11. 11.
    V. P. Kolotov, V. V. ATRASHKEVICH, N. N. Dogadkin, Czech. J. Phys., 49 Suppl. S1 (1999) 423.Google Scholar
  12. 12.
    M. C. LÉpy, J. Morel, B. Chauvenet, Rapport CEA R-5356, 1986.Google Scholar
  13. 13.
    M. Korun, R. Martinèiè, Nucl. Instr. Meth., A355 (1995) 600.Google Scholar
  14. 14.
    F. Piton, M. C. LÉpy, M. M. BÉ, J. Plagnard, Appl. Radiation Isotopes, 52 (2000) 791.Google Scholar
  15. 15.
    D. Arnold, O. Sima, Appl. Radiation Isotopes, 52 (2000) 725.Google Scholar
  16. 16.
    O. Sima, D. Arnold, Appl. Radiation Isotopes, 47 (1996) 889.Google Scholar
  17. 17.
    M. M. BÉ, B. Duchemin, J. LamÉ, Nucl. Instr. Meth., A369 (1996) 523.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  • D. Arnold
    • 1
  • O. Sima
    • 2
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Physics DepartmentBucharest UniversityBucharest-MagureleRomania

Personalised recommendations